Skip to main content
Log in

Starch-supported cuprous iodide nanoparticles catalysed C–C bond cleavage: use of carbon-based leaving groups for bisindolylmethane synthesis

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

A starch-supported cuprous iodide nanoparticles (CuI-NPs@starch) catalysed C–C bond cleaving reaction involving carbon-based leaving groups like malononitrile, ethyl cyanoacetate, acetylacetone, and Meldrum’s acid has been developed under moisture and air insensitive conditions. This competent C–C bond cleavage reaction is studied in detail as an attractive alternative method to synthesize biologically relevant bisindolylmethanes in moderate to good yields. The CuI-NPs@starch are synthesized in aqueous medium and characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All relevant data are included in the manuscript and its supporting information.

References

  1. Bhunia S, Das D (2022) Tetrahedron Lett 112:132738

    Article  CAS  Google Scholar 

  2. Paul D, Chatterjee PN (2022) ChemistrySelect 7:e202200965

    Article  CAS  Google Scholar 

  3. Chen F, Wang T, Jiao N (2014) Chem Rev 114:8613

    Article  CAS  PubMed  Google Scholar 

  4. Nakao Y (2021) Chem Rev 121:327

    Article  CAS  PubMed  Google Scholar 

  5. Mattalia JMR (2017) Beilstein J Org Chem 13:267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dermenci A, Coe JW, Dong G (2014) Org Chem Front 1:567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu H, Feng M, Jiang X (2014) Chem Asian J 9:3360

    Article  CAS  PubMed  Google Scholar 

  8. Li H, Li W, Liu W, He Z, Li Z (2011) Angew Chem Int Ed 50:2975

    Article  CAS  Google Scholar 

  9. Li W, Zheng X, Li Z (2013) Adv Synth Catal 355:181

    Article  CAS  Google Scholar 

  10. Yang Y, Ni F, Shu WM, Wu AX (2014) Chem Eur J 20:11776

    Article  CAS  PubMed  Google Scholar 

  11. Wilsily A, Nguyen Y, Fillion E (2009) J Am Chem Soc 131:15606

    Article  CAS  PubMed  Google Scholar 

  12. Fillion E, Beaton E, Nguyen Y, Wilsily A, Bondarenko G, Jacq J (2016) Adv Synth Catal 358:3422

    Article  CAS  Google Scholar 

  13. Mahoney SJ, Lou T, Bondarenko G, Fillion E (2012) Org Lett 14:3474

    Article  CAS  PubMed  Google Scholar 

  14. Vajargahy MP, Dabiri M, Bazgir A (2017) J Iran Chem Soc 14:1899

    Article  CAS  Google Scholar 

  15. Paul D, Khatua S, Chatterjee PN (2019) New J Chem 43:10056

    Article  CAS  Google Scholar 

  16. Paul D, Khatua D, Chatterjee PN (2018) ChemistrySelect 3:11649

    Article  CAS  Google Scholar 

  17. Kalita G, Deka N, Paul D, Thapa L, Dutta GK, Chatterjee PN (2021) Synlett 32:304

    Article  CAS  Google Scholar 

  18. Paul D, Chatterjee PN (2020) Eur J Org Chem 2020:4705

    Article  CAS  Google Scholar 

  19. Lia M, Gu Y (2012) Adv Synth Catal 354:2484

    Article  Google Scholar 

  20. Li M, Taheri A, Liu M, Sun S, Gu Y (2014) Adv Synth Catal 356:537

    Article  CAS  Google Scholar 

  21. Li H, Yang J, Liu Y, Li Y (2009) J Org Chem 74:6797

    Article  CAS  PubMed  Google Scholar 

  22. Yang Q, Wang L, Guo T, Yu Z (2012) J Org Chem 77:8355

    Article  CAS  PubMed  Google Scholar 

  23. Chantana C, Jaratjaroonphong J (2021) J Org Chem 86:2312

    Article  CAS  PubMed  Google Scholar 

  24. Deb ML, Bhuyan PJ (2008) Synthesis 18:2891

    Google Scholar 

  25. Anilkumar G, Saranya S (2020) Copper catalysis in organic synthesis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  26. Prajapati JP, Das D, Katlakunta S, Maramu N, Ranjand V, Mallick S (2021) Inorg Chim Acta 515:120069

    Article  CAS  Google Scholar 

  27. Prajapati JP, Toppo A, Majhi P, Pradhan U, Das A, Das D, Sriramulu G, Mallick S, Katlakunta S, Shukla AK (2023) ChemistrySelect 8:e202300531

    Article  Google Scholar 

  28. Chakraborty N, Banerjee J, Chakraborty P, Banerjee A, Chanda S, Ray K, Acharya K, Sarkar J (2022) Green Chem Lett Rev 15:187

    Article  CAS  Google Scholar 

  29. Kundu M, Mondal B, Das D, Roy UK (2022) ChemistrySelect 7:e202104543

    Article  CAS  Google Scholar 

  30. Alonso F, Moglie Y, Radivoy G (2015) Acc Chem Res 48:2516

    Article  CAS  PubMed  Google Scholar 

  31. Gawande MB, Goswami A, Felpin F, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS (2016) Chem Rev 116:3722

    Article  CAS  PubMed  Google Scholar 

  32. Ojha NK, Zyryanov GV, Majee A, Charushin VN, Chupakhin ON, Santra S (2017) Coord Chem Rev 353:1

    Article  CAS  Google Scholar 

  33. Das D (2016) ChemistrySelect 1:1959

    Article  CAS  Google Scholar 

  34. Kute AD, Gaikwad RP, Warkad IR, Gawande MB (2022) Green Chem 24:3502

    Article  CAS  Google Scholar 

  35. Wang S, Yuan M, Zhang Q, Huang S (2022) Curr Opin Green Sustainable Chem 38:100698

    Article  CAS  Google Scholar 

  36. Pathak R, Punetha VD, Bhatt S, Punetha M (2024) J Mater Sci 59:6169

    Article  CAS  Google Scholar 

  37. Shiri M, Zolfigol MA, Kruger HG, Tanbakouchian Z (2010) Chem Rev 110:2250

    Article  CAS  PubMed  Google Scholar 

  38. Mohapatra SS, Mukhi P, Mohanty A, Pal S, Sahoo AO, Das D, Roy S (2015) Tetrahedron Lett 56:5709

    Article  CAS  Google Scholar 

  39. Mathavan S, Kannan K, Yamajala RBRD (2019) Org Biomol Chem 17:9620

    Article  CAS  PubMed  Google Scholar 

  40. Mallick S, Mukhi P, Kumari P, Mahato KR, Verma SK, Das D (2019) Catal Lett 149:3501

    Article  CAS  Google Scholar 

  41. Ma Y, Gu M, Huang S, Liu X, Liu B, Ni C (2013) Mater Lett 100:166

    Article  CAS  Google Scholar 

  42. Mousavi-Kamazani M, Zarghami Z, Salavati-Niasari M (2016) J Phys Chem C 120:2096

    Article  CAS  Google Scholar 

  43. Xie Z-B, Sun D-Z, Jiang G-F, Le Z-G (2014) Molecules 19:19665

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yang J, Wang Z, Pan F, Lia Y, Bao W (2010) Org Biomol Chem 8:2975

    Article  CAS  PubMed  Google Scholar 

  45. Grigolo TA, Denofre S, Manarin F, Botteselle GV, Brandão P, Amaral AA, de Campos EA (2017) Dalton Trans 46:15698

    Article  CAS  PubMed  Google Scholar 

  46. Azizi N, Gholibeghlo E, Manocheri Z (2012) Sci Iran C 19:574

    Article  CAS  Google Scholar 

  47. Hikawa H, Yokoyama Y (2013) RSC Adv 3:1061

    Article  CAS  Google Scholar 

  48. Qu H-E, Xiao C, Wang N, Yu K-H, Hu Q-S, Liu L-X (2011) Molecules 16:3855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. He Y-H, Cao J-F, Li R, Xiang Y, Yang D-C, Guan Z (2015) Tetrahedron 71:9299

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Science & Engineering Research Board (Grant CRG/2023/001214 & YSS/2015/001425).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debjit Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 454 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, M., Singh, R.B., Katlakunta, S. et al. Starch-supported cuprous iodide nanoparticles catalysed C–C bond cleavage: use of carbon-based leaving groups for bisindolylmethane synthesis. Monatsh Chem (2024). https://doi.org/10.1007/s00706-024-03215-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00706-024-03215-2

Keywords

Navigation