Skip to main content
Log in

Phosphine-coated Pd@Fe3O4 nanoparticles: a highly efficient and magnetically recyclable nanocatalyst for the arylation of aldehyde

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Phosphine@Pd@Fe3O4 nanomagnetic particles were synthesized through in situ or direct immobilization of the phosphine ligand on metal-coated Fe3O4. These separable heterogeneous nanoparticles were employed as highly efficient catalysts for the arylation of aldehydes using boron reagents, yielding up to 90% within 30 min. The synthesized catalysts were easily recovered through simple magnetic decantation and exhibited no significant decrease in activity upon reuse. The structure and morphology of the nanomagnetic particles were characterized using various techniques, including energy-dispersive X-ray spectroscopy, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, differential thermal analysis, X-ray diffraction, vibrating-sample magnetometer analysis, and FT-IR spectroscopy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dong Z, Ren Z, Thompson SJ, Xu Y, Dong G (2017) Chem Rev 117:9333

    Article  CAS  PubMed  Google Scholar 

  2. Park Y, Kim Y, Chang S (2017) Chem Rev 117:9247

    Article  CAS  PubMed  Google Scholar 

  3. Zaccaria F, Sian L, Zuccaccia C, Macchioni A (2020) Ion pairing in transition metal catalyzed olefin polymerization. Advances in Organometallic Chemistry, p 1. Elsevier

    Google Scholar 

  4. Jiang T, Zhang H, Ding Y, Zou S, Chang R, Huang H (2020) Chem Soc Rev 49:1487

    Article  CAS  PubMed  Google Scholar 

  5. Trowbridge A, Walton SM, Gaunt MJ (2020) Chem Rev 120:2613

    Article  CAS  PubMed  Google Scholar 

  6. Yang X, Kalita SJ, Maheshuni S, Huang Y-Y (2019) Coord Chem Rev 392:35

    Article  CAS  Google Scholar 

  7. Akkarasamiyo S, Ruchirawat S, Ploypradith P, Samec JS (2020) Synthesis 52:645

    Article  CAS  Google Scholar 

  8. Zhu D, Lv L, Li CC, Ung S, Gao J, Li CJ (2018) Angew Chem 130:16758

    Article  Google Scholar 

  9. Singer RA (2020) Isr J Chem 60:294

    Article  CAS  Google Scholar 

  10. Mateos-Gil J, Mondal A, Castiñeira Reis M, Feringa BL (2020) Angew Chem 132:7897

    Article  Google Scholar 

  11. Dennis JM, White NA, Liu RY, Buchwald SL (2019) ACS Catal 9:3822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hone CA, Lopatka P, Munday R, O’Kearney-McMullan A, Kappe CO (2019) Chemsuschem 12:326

    Article  CAS  PubMed  Google Scholar 

  13. Zhang S, Yao Q-J, Liao G, Li X, Li H, Chen H-M, Hong X, Shi B-F (2019) ACS Catal 9:1956

    Article  CAS  Google Scholar 

  14. Knöfel ND, Rothfuss H, Willenbacher J, Barner-Kowollik C, Roesky PW (2017) Angew Chem Int Ed 56:4950

    Article  Google Scholar 

  15. Jin X, Feng J, Li S, Song H, Yu C, Zhao K, Kong F (2019) Mol Catal 475:110503

    Article  CAS  Google Scholar 

  16. Cole-Hamilton DJ (2003) Science 299:1702

    Article  CAS  PubMed  Google Scholar 

  17. Dewaele A, Verpoort F, Sels B (2016) ChemCatChem 8:3010

    Article  CAS  Google Scholar 

  18. Shiri L, Tahmasbi B (2017) Phosphorus Sulfur Silicon Relat Elem 192:53

    Article  CAS  Google Scholar 

  19. Benaglia M, Puglisi A (2019) Catalyst immobilization: methods and applications. Wiley

    Google Scholar 

  20. Pan D, Pan Z, Hu Z, Li M, Hu X, Jin L, Sun N, Hu B, Shen Z (2019) Eur J Org Chem 2019:5650

    Article  CAS  Google Scholar 

  21. Matsude A, Hirano K, Miura M (2020) Adv Synth Catal 362:518

    Article  CAS  Google Scholar 

  22. Paone E, Espro C, Pietropaolo R, Mauriello F (2016) Catal Sci Technol 6:7937

    Article  CAS  Google Scholar 

  23. Kuriyama M, Ishiyama N, Shimazawa R, Onomura O (2010) Tetrahedron 66:6814

    Article  CAS  Google Scholar 

  24. Liu Y, Bo R, Wu N, Qiao Y, Li Y, Wu H, Xu Z (2014) Lett Org Chem 11:356

    Article  CAS  Google Scholar 

  25. Zhao H, Cheng M, Zhang T, Cai M (2015) J Organomet Chem 777:50

    Article  CAS  Google Scholar 

  26. Presset M, Paul J, Cherif GN, Ratnam N, Laloi N, Léonel E, Gosmini C, Le Gall E (2019) Chem Eur J 25:4491

    Article  CAS  PubMed  Google Scholar 

  27. Wu J, Zeng H, Cheng J, Zheng S, Golen JA, Manke DR, Zhang G (2018) J Org Chem 83:9442

    Article  CAS  PubMed  Google Scholar 

  28. Storz MP, Allegretta G, Kirsch B, Empting M, Hartmann RW (2014) Org Biomol Chem 12:6094

    Article  CAS  PubMed  Google Scholar 

  29. Denegri B, Streiter A, Jurić S, Ofial AR, Kronja O, Mayr H (2006) Chem Eur J 12:1648

    Article  CAS  PubMed  Google Scholar 

  30. de Crauw T (1931) Recl Trav Chim Pays-Bas 50:753

    Article  Google Scholar 

  31. Davies AG, Ebeid F, Kenyon J (1957). J Chem Soc. https://doi.org/10.1039/jr9570003154

    Article  Google Scholar 

  32. Lebleu T, Paquin J-F (2017) Tetrahedron Lett 58:442

    Article  CAS  Google Scholar 

  33. Blum J, Becker Y (1972) J Chem Soc Perkin Trans 2:982

    Article  Google Scholar 

  34. Naimi-Jamal MR, Mokhtari J, Dekamin MG, Kaupp G (2009) Eur J Org Chem 2009:3567

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the University of Kurdistan Research Council for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akram Ashouri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 5982 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashouri, A., Pourian, S. & Nasiri, B. Phosphine-coated Pd@Fe3O4 nanoparticles: a highly efficient and magnetically recyclable nanocatalyst for the arylation of aldehyde. Monatsh Chem 155, 621–629 (2024). https://doi.org/10.1007/s00706-024-03201-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-024-03201-8

Keywords

Navigation