Skip to main content
Log in

Ferric oxide nanocatalyst: synthesis, characterization, and application in the one-pot three-component synthesis of 3,4,5-trisubstituted isoxazole derivatives

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In this study, we have focused on the preparation and application of a nano-ferric oxide catalyst as a heterogeneous catalyst in the one-pot, three-component synthesis of isoxazole derivatives. The ferric oxide catalyst was synthesized using a simple precipitation method and thoroughly characterized using techniques such as FT-IR, XRD, SEM, EDX, and BET. The effectiveness of the ferric oxide catalyst as a heterogeneous catalyst was investigated in the synthesis of 3,4,5-trisubstituted isoxazole. The results of the synthesis demonstrated that the catalyst exhibited high efficiency in facilitating the three-component, one-pot synthesis of 3,4,5-trisubstituted isoxazole derivatives. The synthesis route employed in this study offers several advantages, including its simplicity, ease of workup, and environmental friendliness. Furthermore, the catalyst was successfully recovered and reused for five cycles without experiencing a significant loss in catalytic activity. This finding highlights the excellent stability and promising potential of the catalyst for organic transformations. Overall, our study showcases the successful preparation and application of the nano-ferric oxide catalyst in the synthesis of isoxazole derivatives, providing valuable insights into its catalytic performance and potential for future applications in organic chemistry.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The spectroscopic data of the products are available in the supplementary information.

References

  1. Kazemi M (2020) Synth Commun 50:1899

    Article  CAS  Google Scholar 

  2. Kazemi M, Ghobadi M, Mirzaie A (2018) Nanotechnol Rev 7:43

    Article  CAS  Google Scholar 

  3. Miceli M, Fontera P, Malara A (2021) Catalyst 11:591

    Article  CAS  Google Scholar 

  4. Gawande MB, Branco PS, Varma RS (2013) Chem Soc Rev 42:3371

    Article  CAS  PubMed  Google Scholar 

  5. White RJ, Luque R, Budarine VL, Clark JH, MacQuarrie DJ (2009) Chem Soc Rev 38:481

    Article  CAS  PubMed  Google Scholar 

  6. Lim H, Lee J, Lee S, Kim J, Yoon J, Hyeon T (2006). Chem Commun. https://doi.org/10.1039/B513517F

    Article  Google Scholar 

  7. Ma Y, Fu J, Gao Z, Zhang L, Li C, Wang T (2017) Catalysts 7:103

    Article  Google Scholar 

  8. Tran PH-L, Tran TT-D, Vo TV, Lee BJ (2012) Arch Pharm Res 35:2045

    Article  CAS  PubMed  Google Scholar 

  9. Marnet S, Vasseur S, Grasset F, Veverka P, Goglio G, Demourgues A, Portier J, Pollert E, Duguet E (2006) Prog Solid State Chem 34:237

    Article  Google Scholar 

  10. Schuth F, Lu A-H, Salabas EL (2007) Angew Chem Int Ed 46:1222

    Article  Google Scholar 

  11. Lim CW, Lee IS (2010) Nano Today 5:412

    Article  CAS  Google Scholar 

  12. Stevens PD, Li G, Fan J, Yen M, Gao Y (2005). Chem Commun. https://doi.org/10.1039/b505424a

    Article  Google Scholar 

  13. Eskandari K, Khodabakhshi S (2018) Lett Org Chem 15:463

    Article  CAS  Google Scholar 

  14. Wang Z, Xiao P, Shen B, He N (2006) Colloids Surf A Physicochem Eng Asp 276:116

    Article  CAS  Google Scholar 

  15. Gnanaprakash G, Ayyappan S, Jayakumar T, Philip J, Raj B (2006) Nanotechnology 17:5851

    Article  CAS  Google Scholar 

  16. Turtelli RS, Duong GV, Numes W, Grossinger R, Knobel M (2008) J Magn Magn Mater 320:e339

    Article  Google Scholar 

  17. Cannas C, Ardu A, Musinu A, Peddis D, Piccaluga G (2008) Chem Mater 20:6364

    Article  CAS  Google Scholar 

  18. Wu Q, Zhang H, Zhou L, Bao C, Zhu H, Zhang Y (2016) Chem Eng 67:484

    CAS  Google Scholar 

  19. Deng J, Chen YJ, Lu YA, Ma XY, Feng SF, Gao N, Li J (2017) Environ Sci Pollut Res 24:14396

    Article  CAS  Google Scholar 

  20. Diao Z, Cheng L, Guo W, Hou X, Zheng P, Zhou Q (2021) Front Chem Sci Eng 15:643

    Article  CAS  Google Scholar 

  21. Sharma R, Bansal S, Singhal S (2015) RSC Adv 5:6006

    Article  CAS  Google Scholar 

  22. Abu-Diet AM, Abdel-Fatah SM (2018) Beni-Suef Univ J Basic Appl Sci 7:55

    Google Scholar 

  23. Sashkina K, Parkhomchuk E, Rudina N, Parmon V (2014) Microporus Mesoporous Mater 189:181

    Article  CAS  Google Scholar 

  24. Barmade MA, Murumkar PR, Sharma MK, Yadav MR (2016) Curr Top Med Chem 16:2863

    Article  CAS  PubMed  Google Scholar 

  25. Ghasemi Z, Amale AH, Azizi S, Valizadeh S (2021) RSC Adv 11:36958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Galenko AV, Khebnikov AF, Novikov MS, Pakalnis VV, Rostovskii NV (2015) Russ Chem Rev 84:335

    Article  CAS  Google Scholar 

  27. Walunj Y, Mhaske P, Kulkarni P (2021) Mini Rev Org Chem 18:55

    CAS  Google Scholar 

  28. Li J, Lin Z, Wu W, Jiang H (2020) Org Chem Front 7:2325

    Article  CAS  Google Scholar 

  29. Serebryannikova AV, Galenko EE, Novikov MS, Khlebnikov AF (2019) J Org Chem 84:15567

    Article  CAS  PubMed  Google Scholar 

  30. Jensen MR, Schoepfer J, Radimerski T (2008) Breast Cancer Res 10:R33

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen D, Shen A, Li J (2014) Eur J Med Chem 87:765

    Article  CAS  PubMed  Google Scholar 

  32. Sharp SY, Prodromou C, Boxall K (2007) Mol Cancer Ther 6:1198

    Article  CAS  PubMed  Google Scholar 

  33. Jin RY, Sun XH, Liu YF, Long W, Chen B, Shen SQ, Ma HX (2016) Spectrochim Acta Part A 152:226

    Article  CAS  Google Scholar 

  34. Panda SS, Chowdary PVR, Jayashree BS (2009) Indian J Pharm Sci 71:684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gutierrez M, Amiga J, Fuentes E, Palomo I, Astudillo L (2014) Platelets 25:234

    Article  CAS  PubMed  Google Scholar 

  36. Ali MA, Ismail R, Choon TS, Yoon YK, Pandian S, Ansari MZH (2011) J Enzyme Inhib Med Chem 68:343

    CAS  Google Scholar 

  37. Zhu J, Mo J, Lin H, Chen Y, Sun H (2018) Bioorg Med Chem 26:3065

    Article  CAS  PubMed  Google Scholar 

  38. Gaikwad NB, Bansod S, Mara A, Garise R, Srinivas N, Godugu C, Yaddanapudi VM (2021) Bioorg Med Chem 49:128294

    Article  CAS  Google Scholar 

  39. Beyzaei H, Delijoo MK, Aryan R, Ghasemi B, Zahedi MM, Moghaddam M, Mahesh MM (2018) Chem Central J 12:114

    Article  CAS  Google Scholar 

  40. Bormann AM, Morrison VA (2009) Drug Des Dev Ther 3:295

    Article  CAS  Google Scholar 

  41. Waldo JP, Larock RC (2007) J Org Chem 72:9643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Oakdale JS, Sit RK, Fokin VV (2014) Chem Eur J 20:11101

    Article  CAS  PubMed  Google Scholar 

  43. Grecian S, Fokin VV (2008) Angew Chem Int Ed 47:8285

    Article  CAS  Google Scholar 

  44. Hossain I, Khan HI, Kim SJ, Le HV (2022) Beilstein J Org Chem 18:446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the management and principal of PDEA's Ramkrishna More College Akurdi (Pune) for their encouragement, as well as the Central Instrumentation Facility (CIF) of Savitribai Phule Pune University and the SAIF CDRIL Lucknow for providing spectral data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Kulkarni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 13540 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Totre, G., Shinde, D., Shirsath, S. et al. Ferric oxide nanocatalyst: synthesis, characterization, and application in the one-pot three-component synthesis of 3,4,5-trisubstituted isoxazole derivatives. Monatsh Chem (2024). https://doi.org/10.1007/s00706-024-03194-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00706-024-03194-4

Keywords

Navigation