Skip to main content

Advertisement

Log in

A new screen-printed carbon sensor decorated gold nanoparticles/kaolinite mineral: electrochemical analysis of propyphenazone and the investigation of ds-DNA interaction

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

This work represents the development of natural kaolinite mineral (Kao)-gold nanoparticles (GNPs) modified screen-printed carbon electrode (SPCE) based on biocompatible electrode material for the electrochemical quantification of propyphenazone and the investigation of the interaction between propyphenazone and ds-DNA. The surface characteristics of the Kao-GNPs/SPCE were examined by cyclic voltammetry, electrochemical impedance spectroscopy, and field-emission scanning electron microscopy with energy dispersive X-ray spectroscopy methods. The effect of Kao and gold compositions, pH, and interferences studied the analytical performance of this sensor. Propyphenazone has an irreversible oxidation signal on the Kao-GNPs/SPCE sensor surface. Based on this oxidation signal, calibration works were carried out using differential pulse voltammetry, and linear working range, LOD, and LOQ were determined. The real sample analysis of propyphenazone was implemented in human serum samples with a recovery value of 99.43%. Binding constant (K) and Gibbs free energy change (ΔG°) relating to the interaction between propyphenazone and ds-DNA were calculated to be 2.14 (± 0.42) × 104 M−1 and − 24.70 kJ mol−1, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data available on request.

References

  1. Gergov G, Alin A, Katsarov P, Simeonov V, Yankov D, Al-Degs Y (2018) Bulg Chem Commun 50:265

    Google Scholar 

  2. Burdan F (2004) Hum Exp Toxicol 23:235

    Article  CAS  PubMed  Google Scholar 

  3. Boerlin V, Maeglin B, Hägler W, Kuhn M, Nüesch E (1986) Eur J Clin Pharmacol 31:127

    Article  CAS  PubMed  Google Scholar 

  4. Santoni G, Fabbri L, Gratteri P, Renzi G, Pinzauti S (1992) Int J Pharm 80:263

    Article  CAS  Google Scholar 

  5. Rouan M, Campestrini J, Lecaillon J, Godbillon J (1992) J Chromatogr B Biomed Sci Appl 577:387

    Article  CAS  Google Scholar 

  6. Rohman A, Dzulfianto A, Riswanto FDO (2017) Indones J Pharm 28:191

    Article  Google Scholar 

  7. Scholz F (2015) ChemTexts 1:17

    Article  Google Scholar 

  8. Porada R, Jedlińska K, Lipińska J, Baś B (2020) J Electrochem Soc 167:037536

    Article  CAS  Google Scholar 

  9. David IG, Buleandra M, Popa DE, Cheregi MC, David V, Iorgulescu EE, Tartareanu GO (2022) Processes 10:472

    Article  CAS  Google Scholar 

  10. Couto R, Lima J, Quinaz M (2016) Talanta 146:801

    Article  CAS  PubMed  Google Scholar 

  11. Trojanowicz M, Mulchandani A, Mascini M (2004) Anal Lett 37:3185

    Article  CAS  Google Scholar 

  12. Buffon E, Stradiotto NR (2021) Microchem J 167:106339

    Article  CAS  Google Scholar 

  13. Gupta A, Sharma AL, Deep A (2021) J Environ Chem Eng 9:104925

    Article  CAS  Google Scholar 

  14. Shih Y, Zen J-M, Yang H-H (2002) J Pharm Biomed Anal 29:827

    Article  CAS  PubMed  Google Scholar 

  15. Murray HH (2006) Dev Clay Sci 2:7

    Article  Google Scholar 

  16. Brown G (1984) Philos Trans Royal Soc A 311:221

    CAS  Google Scholar 

  17. Akanji SP, Arotiba OA, Nkosi D (2019) Electrocatalysis 10:643

    Article  CAS  Google Scholar 

  18. Phongphut A, Chayasombat B, Cass AE, Sirisuk A, Phisalaphong M, Prichanont S, Thanachayanont C (2020) Appl Clay Sci 194:105704

    Article  CAS  Google Scholar 

  19. Williams AK, Dasilva SC, Bhatta A, Rawal B, Liu M, Korobkova EA (2012) Anal Biochem 422:66

    Article  CAS  PubMed  Google Scholar 

  20. Erden S, Yazan Z (2018) Rev Roum Chim 63:977

    Google Scholar 

  21. Silva WP, Silva LA, França CH, Sousa RM, Muñoz RA, Richter EM (2017) Electroanalysis 29:1860

    Article  CAS  Google Scholar 

  22. Borowiec J, Wei L, Zhu L, Zhang J (2012) Anal Methods 4:444

    Article  CAS  Google Scholar 

  23. Aydar S, Bayraktepe D, Filik H, Yazan Z (2020) Acta Chim Slov 67:729

    Article  CAS  PubMed  Google Scholar 

  24. Tüzün ÜN, Yıldız C, Eskiköy Bayraktepe D, Polat K, Yazan Z (2023) Monatsh Chem 154:95

    Article  Google Scholar 

  25. Shahabadi N, Moghadam NH (2012) Spectrochim Acta A Mol Biomol Spectrosc 99:18

    Article  CAS  PubMed  Google Scholar 

  26. Bayraktepe DE (2020) Microchem J 157:104946

    Article  CAS  Google Scholar 

  27. Ni Y, Wang Y, Kokot S (2010) Electroanalysis 22:2216

    Article  CAS  Google Scholar 

  28. Kalanur SS, Katrahalli U, Seetharamappa J (2009) J Electroanal Chem 636:93

    Article  CAS  Google Scholar 

  29. Morawska K, Popławski T, Ciesielski W, Smarzewska S (2020) Bioelectrochemistry 136:107630

    Article  CAS  PubMed  Google Scholar 

  30. Temerk Y, Ibrahim M, Ibrahim H, Kotb M (2016) J Electroanal Chem 769:62

    Article  CAS  Google Scholar 

  31. Bi S, Zhang H, Qiao C, Sun Y, Liu C (2008) Spectrochim Acta A Mol Biomol Spectrosc 69:123

    Article  PubMed  Google Scholar 

  32. Nawaz H, Rauf S, Akhtar K, Khalid AM (2006) Anal Biochem 354:28

    Article  CAS  PubMed  Google Scholar 

  33. Pandit UJ, Naikoo GA, Khan GA, Wankar S, Khan I, Raj KK, Limaye SN (2017) Pharma Chem 9:82

    CAS  Google Scholar 

  34. Sirajuddin M, Ali S, Badshah A (2013) J Photochem Photobiol B. Biol 124:1

    CAS  Google Scholar 

  35. Urçuk A, Bayraktepe DE, Yıldız C, Yazan Z (2022) J Mol Liq 360:119434

    Article  Google Scholar 

  36. Hezard T, Fajerwerg K, Evrard D, Collière V, Behra P, Gros P (2012) J Electroanal Chem 664:46

    Article  CAS  Google Scholar 

  37. Bayraktepe DE, Yıldız C, Yazan Z (2023) Talanta 257:124361

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Ankara University Research Fund with project number 20L0430001 for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zehra Yazan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 452 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yıldız, C., Eskiköy Bayraktepe, D. & Yazan, Z. A new screen-printed carbon sensor decorated gold nanoparticles/kaolinite mineral: electrochemical analysis of propyphenazone and the investigation of ds-DNA interaction. Monatsh Chem 155, 47–55 (2024). https://doi.org/10.1007/s00706-023-03144-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-023-03144-6

Keywords

Navigation