Skip to main content
Log in

Synthesis, antimicrobial and antioxidant activity of novel 1-oxo-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine-8-carboxylic acids, esters, and amides thereof

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

A preparatively convenient and efficient method is proposed for the synthesis of novel 1-oxo-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine-8-carboxylic acids, based on the reaction of (3-oxopiperazine-2-ylidene)ethanoates with 2-bromo-1,1-diethoxyethane and accomplished through the stage of intermediate methyl 1-oxo-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine-8-carboxylates, which were also isolated as individual compounds. A method of directly transforming 1-oxo-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine-8-carboxylic acids into 1-oxo-N-(alkyl)aryl-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine-8-carboxamides via the former’s interaction with aliphatic and aromatic amines in the presence of DIPEA and HATU was developed, with yields of 31–78%. A reliable structural determination of all the synthesized compounds has been performed by elemental analysis and a number of spectroscopic methods (1H and 13C NMR, HPLC/MS) as well as by X-ray diffraction analysis. Biological screening of all types of synthesized compounds revealed their moderate antibacterial and antifungal activity. The antioxidant effect level of the most active carboxamides was in the range of 59.3–74.5%, as compared to ascorbic acid (97.3%).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

We declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Should any raw data files be needed in another format, they are available from the corresponding author upon reasonable request.

References

  1. Winant P, Horsten T, de Gil Melo SM, Emery F, Dehaen W (2021) Organics 2:118. https://doi.org/10.3390/org2020011

    Article  CAS  Google Scholar 

  2. Uemoto H, Tsuda M, Kobayashi J (1999) J Nat Prod 62:1581. https://doi.org/10.1021/np9902542

    Article  CAS  PubMed  Google Scholar 

  3. Cafieri F, Fattorusso E, Mangoni A, Taglialatela-Scafati O (1995) Tetrahedron Lett 36:7893. https://doi.org/10.1016/0040-4039(95)01626-S

    Article  CAS  Google Scholar 

  4. Li T, Wang N, Zhang T, Zhang B, Sajeevan TP, Joseph V, Armstrong L, He S, Yan X, Naman CB (2019) Mar Drugs 17:493. https://doi.org/10.3390/md17090493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ebada SS, Linh MH, Longeon A, de Voogd NJ, Durieu E, Meijer L, Bourguet-Kondracki M-L, Singab ANB, Müller WEG, Proksch P (2015) Nat Prod Res 29:231. https://doi.org/10.1080/14786419.2014.947496

    Article  CAS  PubMed  Google Scholar 

  6. Cafieri F, Fattorusso E, Taglialatela-Scafati O (1998) J Nat Prod 61:122. https://doi.org/10.1021/np970323h

    Article  CAS  PubMed  Google Scholar 

  7. Scala F, Fattorusso E, Menna M, Taglialatela-Scafati O, Tierney M, Kaiser M, Tasdemir D (2010) Mar Drugs 8:2162. https://doi.org/10.3390/md8072162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mancini I, Guella G, Amade P, Roussakis C, Pietra F (1997) Tetrahedron Lett 38:6271. https://doi.org/10.1016/S0040-4039(97)01405-6

    Article  CAS  Google Scholar 

  9. Sun J, Wu J, An B, De Voogd NJ, Cheng W, Lin W (2018) Mar Drugs 16:9. https://doi.org/10.3390/md16010009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mashiko T, Kumagai N, Shibasaki M (2008) Org Lett 10:2725. https://doi.org/10.1021/ol8008446

    Article  CAS  PubMed  Google Scholar 

  11. Meyers KM, Méndez-Andino J, Colson A-O, Hu XE, Wos JA, Mitchell MC, Hodge K, Howard J, Paris JL, Dowty ME, Obringer CM, Reizes O (2007) Bioorg Med Chem Lett 17:657. https://doi.org/10.1016/j.bmcl.2006.10.096

    Article  CAS  PubMed  Google Scholar 

  12. Ward RA, Bethel P, Cook C, Davies E, Debreczeni JE, Fairley G, Feron L, Flemington V, Graham MA, Greenwood R, Griffin N, Hanson L, Hopcroft P, Howard TD, Hudson J, James M, Jones CD, Jones CR, Lamont S, Lewis R, Lindsay N, Roberts K, Simpson I, St-Gallay S, Swallow S, Tang J, Tonge M, Wang Z, Zhai B (2017) J Med Chem 60:3438. https://doi.org/10.1021/acs.jmedchem.7b00267

    Article  CAS  PubMed  Google Scholar 

  13. Casuscelli F, Ardini E, Avanzi N, Casale E, Cervi G, D’Anello M, Donati D, Faiardi D, Ferguson RD, Fogliatto G, Galvani A, Marsiglio A, Mirizzi DG, Montemartini M, Orrenius C, Papeo G, Piutti C, Salom B, Felder ER (2013) Bioorg Med Chem 21:7364. https://doi.org/10.1016/j.bmc.2013.09.054

    Article  CAS  PubMed  Google Scholar 

  14. Micheli F, Cavanni P, Di Fabio R, Marchioro C, Donati D, Faedo S, Maffeis M, Sabbatini FM, Tranquillini ME (2006) Bioorg Med Chem Lett 16:1342. https://doi.org/10.1016/j.bmcl.2005.11.049

    Article  CAS  PubMed  Google Scholar 

  15. Fisher TE, Kim B, Staas DD, Lyle TA, Young SD, Vacca JP, Zrada MM, Hazuda DJ, Felock PJ, Schleif WA, Gabryelski LJ, Anari MR, Kochanskyd CJ, Wai JS (2007) Bioorg Med Chem Lett 17:6511. https://doi.org/10.1016/j.bmcl.2007.09.086

    Article  CAS  PubMed  Google Scholar 

  16. Piltan M, Moradi L, Abasi G, Zarei SA, Wolfe JP (2013) Beilstein J Org Chem 9:510. https://doi.org/10.3762/bjoc.9.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Piltan M (2016) J Chem Res 40:410. https://doi.org/10.3184/174751916X14652279155994

    Article  CAS  Google Scholar 

  18. Moradi L, Piltan M, Rostami H, Abasi G (2013) Chin Chem Lett 24:740. https://doi.org/10.1016/j.cclet.2013.04.038

    Article  CAS  Google Scholar 

  19. Alizadeh A, Abadi MH, Ghanbaripour R (2014) Synlett 25:1705. https://doi.org/10.1055/s-0034-1378275

    Article  CAS  Google Scholar 

  20. Weiss MM, Zheng X (2021) IRAK degraders and uses thereof. World Patent WO2021158634 A1 (2021) Chem Abstr 176: 10869-10870

  21. Le Diguarher T, Casara P, Starck J-B, Henlin J-M, Davidson JEP, Murray JB, Graham CJ, Chen I-J, Geneste O, Hickman J, Depil S, Le Tiran A, Nyerges M, De Nanteuil G (2015) Indolizine compounds, a process for their preparation and pharmaceutical compositions containing them. United States Patent US20150051189A1 2015; (2013) Chem Abstr 159:290274

  22. Gupta AK, Chakrasali RT, Ila H, Junjappa H (1989) Synthesis 1989:141. https://doi.org/10.1055/s-1989-27179

    Article  Google Scholar 

  23. Barun O, Chakrabarti S, Ila H, Junjappa H (2001) J Org Chem 66:4457. https://doi.org/10.1021/jo010273s

    Article  CAS  PubMed  Google Scholar 

  24. Fan M-J, Li G-Q, Liang Y-M (2006) Tetrahedron 62:6782. https://doi.org/10.1016/j.tet.2006.04.100

    Article  CAS  Google Scholar 

  25. Nami N, Neumuller B, Heravi MM, Haghdadi M (2008) Mendeleev Commun 18:153. https://doi.org/10.1016/j.mencom.2008.05.014

    Article  CAS  Google Scholar 

  26. Choudhary G, Peddinti RK (2011) Green Chem 13:3290. https://doi.org/10.1039/C1GC15701A

    Article  CAS  Google Scholar 

  27. Kawahara N, Shimamori T, Itoh T, Takayanagi H, Ogura H (1987) Chem Pharm Bull 35:457. https://doi.org/10.1248/cpb.35.457

    Article  CAS  Google Scholar 

  28. Kawahara N, Nakajima T, Itoh T, Ogura H (1983) Heterocycles 20:121. https://doi.org/10.3987/r-1983-01-0121

    Article  Google Scholar 

  29. Horsten T, Alegbejo Price TO, Van Meervelt L, da Silva EF, Dehaen W (2022) New J Chem 46:2028. https://doi.org/10.1039/D1NJ04965H

    Article  CAS  Google Scholar 

  30. de Figueiredo RM, Suppo J-S, Campagne J-M (2016) Chem Rev 116:12029. https://doi.org/10.1021/acs.chemrev.6b00237

    Article  CAS  PubMed  Google Scholar 

  31. Massolo E, Pirola M, Benaglia M (2020) Eur J Org Chem 2020:4641. https://doi.org/10.1002/ejoc.202000080

    Article  CAS  Google Scholar 

  32. Santos AS, Silva AMS, Marques MMB (2020) Eur J Org Chem 2020:2501. https://doi.org/10.1002/ejoc.202000106

    Article  CAS  Google Scholar 

  33. Lundberg H, Tinnis F, Selander N, Adolfsson H (2014) Chem Soc Rev 43:2714. https://doi.org/10.1039/C3CS60345H

    Article  CAS  PubMed  Google Scholar 

  34. Carey JS, Laffan D, Thomson C, Williams MT (2006) Org Biomol Chem 4:2337. https://doi.org/10.1039/B602413K

    Article  CAS  PubMed  Google Scholar 

  35. Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) J Comb Chem 1:55. https://doi.org/10.1021/cc9800071

    Article  CAS  PubMed  Google Scholar 

  36. Carpino LA (1993) J Am Chem Soc 115:4397. https://doi.org/10.1021/ja00063a082

    Article  CAS  Google Scholar 

  37. Bhatt V, Samant SD, Pednekar S (2017) Lett Org Chem 14:764. https://doi.org/10.2174/1570178614666170710095437

    Article  CAS  Google Scholar 

  38. Zefirov NS, Palyulin VA, Dashevskaya EE (1990) J Phys Org Chem 3:147. https://doi.org/10.1002/poc.610030304

    Article  CAS  Google Scholar 

  39. Burgi H-B, Dunitz JD (1994) Structure correlation, vol 2. VCH, Weinheim, p 741

    Book  Google Scholar 

  40. El-Hameed RHA, Sayed AI, Ali SM, Mosa MA, Khoder ZM, Fatahala SS (2021) J Enzyme Inhib Med Chem 36:2183. https://doi.org/10.1080/14756366.2021.1984904

    Article  CAS  Google Scholar 

  41. Mohamed MS, Fathallah SS (2014) Mini-Rev Org Chem 11:477. https://doi.org/10.2174/1570193x113106660018

    Article  CAS  Google Scholar 

  42. Choudhary D, Garg S, Kaur M, Sohal HS, Malhi DS, Kaur L, Verma M, Sharma A, Mutreja V (2023) Polycycl Aromat Compd 43:4512. https://doi.org/10.1080/10406638.2022.2092873

    Article  CAS  Google Scholar 

  43. Miyazawa T, Takabatake T, Hasegawa M (1997) J Pharm Soc Japan 117:126. https://doi.org/10.1248/yakushi1947.117.2_126

    Article  CAS  Google Scholar 

  44. El-Bayouki KAM, Basyouni WM, Mostafa EA (2010) Collect Czech Chem Commun 75:813. https://doi.org/10.1135/cccc2009566

    Article  CAS  Google Scholar 

  45. Andreou D, Essien NB, Pubill-Ulldemolins C, Terzidis MA, Papadopoulos AN, Kostakis GE, Lykakis IN (2021) Org Lett 23:6685. https://doi.org/10.1021/acs.orglett.1c02251

    Article  CAS  PubMed  Google Scholar 

  46. Pontiki E, Hadjipavlou-Litina D, Patsilinakos A, Tran TM, Marson CM (2015) Future Med Chem 7:1937. https://doi.org/10.4155/fmc.15.104

    Article  CAS  PubMed  Google Scholar 

  47. Lima RN, Gonçalves JR, Silva VR, de Santos L, Bezerra DP, Soares MBP, Leitão A, Porto ALM (2020) Curr Bioact Compd 16:900. https://doi.org/10.2174/1573407215666190318144105

    Article  CAS  Google Scholar 

  48. Nazarchuk OA (2016) Klin Khir 9:59. PMID: 30265488

  49. Crowley PD, Gallagher HC (2014) J Appl Microbiol 117:611. https://doi.org/10.1111/jam.12554

    Article  CAS  PubMed  Google Scholar 

  50. Brand-Williams W, Cuvelier ME, Berset C (1995) LWT Food Sci Technol 28:25. https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  51. Sheldrick GM (2008) Acta Crystallogr Sect A 64:112. https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  52. Kowalska-Krochmal B, Dudek-Wicher R (2021) Pathogens 10:165. https://doi.org/10.3390/pathogens10020165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Enamine Ltd (Kyiv, Ukraine) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariia B. Litvinchuk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4900 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvinchuk, M.B., Bentya, A.V., Grozav, A.M. et al. Synthesis, antimicrobial and antioxidant activity of novel 1-oxo-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine-8-carboxylic acids, esters, and amides thereof. Monatsh Chem 154, 1145–1159 (2023). https://doi.org/10.1007/s00706-023-03118-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-023-03118-8

Keywords

Navigation