Skip to main content

Advertisement

Log in

Site-selective cross-coupling of dihalogenated acetophenones and dihalogenated benzophenones with aryl titanium reagents under catalyst control

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

A method for the selective formation of C2 coupling products via palladium-catalyzed cross-coupling of aryl titanium reagents and dihalogenated benzophenone or dihalogenated acetophenone scaffolds is described. The method uses Pd(dba)2 as catalyst and 2-diisopropylphosphino-2′-dimethylaminobiphenyl as ligand in THF/NMP (3:1) (4.0 cm3) for 10 h at 0 °C. The system can tolerate various functional groups such as aldehydes, esters, etc. In the process of optimizing the coupling method, we also synthesized two new ligands and produced five new monosubstituted aromatic ketones, which appear for the first time in this paper.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All relevant data are within the manuscript and its additional files.

References

  1. Purser S, Moore PR, Swallow S, Gouverneur V (2008) Chem Soc Rev 37:320

    Article  CAS  PubMed  Google Scholar 

  2. Wang J, Sánchez-Roselló M, Acena JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H (2014) Chem Rev 114:2432

    Article  CAS  PubMed  Google Scholar 

  3. Magano J, Dunetz JR (2013) Transition metal-catalyzed couplings in process chemistry: case studies from the pharmaceutical industry. Wiley, Hoboken

    Google Scholar 

  4. Colacot T (2015) New trends in cross-coupling: theory and applications. RSC catalysis series, Cambridge

  5. Wang JR, Manabe K (2009) Synthesis 1405

  6. Hassan Z, Patonay T, Langer P (2013) Synlett 24:412

    Article  CAS  Google Scholar 

  7. Heinrich ACJ, Thiedemann B, Gates PJ, Staubitz A (2015) Org Lett 15:4666

    Article  Google Scholar 

  8. Montoir D, Tonnerre A, Duflos M, Bazin MA (2014) Eur J Org Chem 2014:14879

    Article  Google Scholar 

  9. Singh R, Just G (1989) J Org Chem 54:4453

    Article  CAS  Google Scholar 

  10. Newman SG, Lautens M (2010) J Am Chem Soc 132:11416

    Article  CAS  PubMed  Google Scholar 

  11. Manabe K, Yamaguchi M (2014) Catalysts 4:307

    Article  Google Scholar 

  12. Yamaguchi M, Manabe K (2016) Topics Ccurr Chem 372:1

    CAS  Google Scholar 

  13. Dobrounig P, Trobe M, Breinbauer R (2017) Monatsh Chem 148:3

    Article  CAS  PubMed  Google Scholar 

  14. Yang W, Wang Y, Corte JR (2003) Org Lett 5:3131

    Article  CAS  PubMed  Google Scholar 

  15. Li GY (2002) Catalysis using phosphine oxide and phosphine sulfide complexes with Pd and Ni for the synthesis of biaryls and arylamines. Patent WO2002000574A2, Jan 03, 2002. Chem Abstr 136:85654

  16. Houpis IN, Huang C, Nettekoven U, Chen JG, Liu R, Canters M (2008) Org Lett 10:5601

    Article  CAS  PubMed  Google Scholar 

  17. Ishikawa S, Manabe K (2010) Angew Chem Int Ed 49:772

    Article  CAS  Google Scholar 

  18. Jin L, Xin J, Huang Z, He J, Lei A (2010) J Am Chem Soc 132:9607

    Article  CAS  PubMed  Google Scholar 

  19. Arakawa Y, Wada O, Yu TH (1981) Toxicol Appl Pharmacol 60:1

    Article  CAS  PubMed  Google Scholar 

  20. Shen HC, Crawley MJ, Trost BM (2012) In applications of transition metal catalysis in drug discovery and development: an industrial perspective, chapter 2, p 25. Wiley, Hoboken

  21. Han JW, Tokunaga N, Hayashi T (2002) Synlett 871

  22. Yang HT, Zhou S, Chang FS, Chen CR, Gau HM (2009) Organometallics 28:5715

    Article  CAS  Google Scholar 

  23. Weber B, Seebach D (1994) Tetrahedron 50:7473

    Article  CAS  Google Scholar 

  24. Lee HW, Lam FL, So CM, Lau CP, Chan ASC, Kwong FY (2009) Angew Chem Int Ed 48:7436

    Article  CAS  Google Scholar 

  25. Andrii V, Mark G (2019) J Am Chem Soc 141:10994

    Article  Google Scholar 

  26. Lee HW, So CM, Yuen OY, Wong WT, Kwong FY (2020) Org Chem Front 7:926

    Article  CAS  Google Scholar 

  27. He XY (2021) Monatsh Chem 152:823

    Article  CAS  Google Scholar 

  28. Korn TJ, Schade MA, Cheemala MN, Wirth S, Guevara SA, Cahiez G, Knochel P (2006) Synthesis 21:3547

    Google Scholar 

  29. He B, Nie H, Chen L, Lou XD, Hu RR, Qin AJ, Zhao ZJ, Tang BZ (2015) Org Lett 17:6174

    Article  CAS  PubMed  Google Scholar 

  30. Zeng XH, Xu DQ, Miao CX, Xia CG, Sun W (2014) RSC Adv 4:46494

    Article  CAS  Google Scholar 

  31. Gallistl C, Proctor K, Bader K, Vetter W (2017) Environ Sci Pollut R 24:16815

    Article  CAS  Google Scholar 

  32. Kim IK, Li X, Ullah MJ, Shaw PE, Wawrzinek R, Namdas EB, Lo SC (2015) Adv Mater 27:6390

    Article  CAS  PubMed  Google Scholar 

  33. Thom I, Besson C, Kleine T, Bolm C (2013) Angew Chem Int Ed 52:7509

    Article  Google Scholar 

  34. Fernandes RA, Ramakrishna GV, Bethi V (2020) Org Biomol Chem 18:6115

    Article  CAS  PubMed  Google Scholar 

  35. Li J, Ye DJ, Liu H, Luo XM, Jiang HL (2008) Synth Commun 38:567

    Article  CAS  Google Scholar 

  36. Bedford RB, Brenner PB, Carter E, Clifton J, Cogswell PM, Gower NJ, Haddow MF, Harvey JN, Kehl JA, Murphy DM, Neeve EC, Neidig ML, Nunn J, Snyder BER, Taylor J (2014) Organometallics 33:5767

    Article  CAS  Google Scholar 

  37. Aranyos A, Old DW, Kiyomori A, Wolfe JP, Sadighi JP, Buchwald SL (1999) J Am Chem Soc 121:4369

    Article  CAS  Google Scholar 

  38. Han C, Buchwald SL (2009) J Am Chem Soc 131:7532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tomori H, Fox JM, Buchwald SL (2000) J Org Chem 65:5334

    Article  CAS  PubMed  Google Scholar 

  40. Zhou ZH, Zhang YQ, Xia W, Chen HX, Liang H, He XF, Yu SF, Cao RH, Qiu LQ (2016) Asian J Org Chem 5:1260

    Article  Google Scholar 

  41. Rasovskiy A, Knochel P (2004) Angew Chem Int Ed 43:3333

    Article  Google Scholar 

  42. Krasovskiy A, Knochel P (2006) Synthesis 5:890

    Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledge the financial (YX202215) support from Hebei Chemical & Pharmaceutical College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1033 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H. Site-selective cross-coupling of dihalogenated acetophenones and dihalogenated benzophenones with aryl titanium reagents under catalyst control. Monatsh Chem 154, 873–885 (2023). https://doi.org/10.1007/s00706-023-03101-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-023-03101-3

Keywords

Navigation