Skip to main content
Log in

A highly sensitive chloramphenicol detection sensor based on a carbon-graphite nanocomposite modified with silver nanoparticles application: human serum and urine

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

A highly sensitive Ag NPs@CPE sensor based on a carbon–graphite nanocomposite modified with silver nanoparticles was developed for the electrochemical determination of a drug, the antibiotic chloramphenicol. Electrochemical tests showed that the Ag NPs@CPE electrode had a higher electrochemical activity and a larger effective surface area than the bare electrode. X-ray diffraction and scanning electron microscopy demonstrated the presence of carbon-supported silver particles with a narrow size distribution, providing evidence for the effect of particle size on the electrocatalytic detection efficiency of chloramphenicol. Under optimal conditions, the modified Ag NPs@CPE electrode exhibited an excellent response at the linear detection range was 1.0 × 10–3–1.0 × 10–7 mol/dm3 and a detection limit of 6.19 × 10–8 mol/dm3. The RSD values are 2.66% for repeatability and 3.02% for reproducibility. The proposed sensor provides remarkable selectivity and satisfactory recovery for real chloramphenicol-contaminated human urine and serum samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cunha BA (2001) Med Clin N Am 85:149

    CAS  PubMed  Google Scholar 

  2. Guerra F, Attia M, Whitehead D, Alexis F (2018) Molecules 23:1760

    PubMed Central  PubMed  Google Scholar 

  3. He B, Wang S (2021) Microchim Acta 188:22

    CAS  Google Scholar 

  4. Yuan Y, Xu X, Xia J (2019) Microchim Acta 186:191

    Google Scholar 

  5. Hong F, Lin X, Wu Y (2019) Microchim Acta 186:150

    Google Scholar 

  6. Xiao L, Xu R, Yuan Q, Wang F (2017) Talanta 167:39

    CAS  PubMed  Google Scholar 

  7. van den Anker J, Allegaert K (2012) Expert Rev Clin Pharmacol 5:5

    PubMed Central  PubMed  Google Scholar 

  8. Versporten A, Bolokhovets G, Ghazaryan L (2014) Lancet Infect Dis 14:381

    PubMed  Google Scholar 

  9. Bukkitgar SD, Shetti NP, Kulkarni RM (2018) Sens Actuators B: Chem 255:1462

    CAS  Google Scholar 

  10. Shetti NP, Nayak DS, Malode SJ, Kulkarni RM (2017) J Electrochem Soc 164:B3036

    CAS  Google Scholar 

  11. Shetti NP, Malode SJ, Nayak DS (2019) Microchem J 150:104

    Google Scholar 

  12. Shikandar DB, Shetti NP, Kulkarni RM, Kulkarni SD (2018) ECS J Solid State Sci Technol 7:Q3215

    CAS  Google Scholar 

  13. Shanbhag MM, Bukkitgar SD, Sharma P, Shetti NP (2022) Nanostructured electrodes. In: Sharma P, Shetti NP (eds) Electrochemical sensors. Elsevier, Amsterdam, p 147

  14. Farahi A, Achak M, El Gaini L (2016) J AOAC Int 68:1037

    Google Scholar 

  15. Singer CJ, Katz SE (1985) J AOAC Int 68:1037

  16. Bischoff KM, White DG, McDermott PF (2002) J Clin Microbiol 40:389

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Bukkitgar SD, Shetti NP, Kulkarni RM, Doddamani MR (2016) J Electroanal Chem 762:37

    CAS  Google Scholar 

  18. Karageorgou E, Christoforidou S, Ioannidou M, Psomas E, Samouris G (2018) Foods 7:82

    PubMed Central  PubMed  Google Scholar 

  19. Sheridan R, Policastro B, Thomas S, Rice D (2008) J Agric Food Chem 56:3509

    CAS  PubMed  Google Scholar 

  20. Singer CJ, Katz SE (1985) J AOAC Int 68:1037

    CAS  Google Scholar 

  21. Karageorgou E, Christoforidou S, Ioannidou M (2018) Foods 7:82

    PubMed Central  PubMed  Google Scholar 

  22. Pan X-D, Jiang W, Wu P-G (2015) Analyst 140:366

    CAS  PubMed  Google Scholar 

  23. Ali I, Aboul-Enein HY, Gupta VK (2009) Anal Lett 42:1368

    CAS  Google Scholar 

  24. Tao X, Jiang H, Zhu J (2014) Food Agric Immunol 25:137

    CAS  Google Scholar 

  25. Yu X, He Y, Jiang J, Cui H (2014) Anal Chim Acta 812:236

    CAS  PubMed  Google Scholar 

  26. Wang M-H, Gu J-A, Mani V (2014) RSC Adv 4:64112

    CAS  Google Scholar 

  27. Ma P, Sun Y, Khan IM (2020) Microchim Acta 187:505

    CAS  Google Scholar 

  28. Tao X, He F, Liu X (2020) Microchim Acta 187:668

    CAS  Google Scholar 

  29. Abnous K, Danesh NM, Ramezani M (2016) Biosens Bioelectron 78:80

    CAS  PubMed  Google Scholar 

  30. George JM, Antony A, Mathew B (2018) Microchim Acta 185:358

    Google Scholar 

  31. Zhou Y, Sui C, Yin H (2018) Microchim Acta 185:453

    Google Scholar 

  32. Wang Y, Bian F, Qin X, Wang Q (2018) Microchim Acta 185:161

    Google Scholar 

  33. Zoubir J, Bakas I, Assabbane A (2021) Nanotechnol Environ Eng 6:54

    CAS  Google Scholar 

  34. Zoubir J, Radaa C, Bougdour N (2021) Mater Sci Energy Technol 4:177

    CAS  Google Scholar 

  35. Zoubir J, Bakas I, Assabbane A (2021) Heliyon 7:e07542

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Zoubir J, Radaa C, Idlahcen A (2021) Mater Sci Energy Technol 4:296

    CAS  Google Scholar 

  37. Zoubir J, Assabbane A, Bakas I (2022) Carbon Lett 32:767

    Google Scholar 

  38. Zoubir J, Radaa C, Bougdour N (2022) J Indian Chem Soc 99:100590

    CAS  Google Scholar 

  39. Zoubir J, Elkhotfi Y, Radaa C (2021) Sens Int 2:100

    Google Scholar 

  40. Zhang X, Zhang Y-C, Zhang J-W (2016) Talanta 161:567

    CAS  PubMed  Google Scholar 

  41. Yi W, Li Z, Dong C (2019) Microchem J 148:774

    CAS  Google Scholar 

  42. Alévêque O, Blanchard P-Y, Gautier C (2010) Electrochem Commun 12:1462

    Google Scholar 

  43. Yadav M, Ganesan V, Gupta R (2019) Microchem J 146:881

    CAS  Google Scholar 

  44. Zoubir J, Radaa C, Bakas I (2023) Carbon Lett 33:761

    Google Scholar 

  45. Sebastian N, Yu W-C, Balram D (2019) Inorg Chem Front 6:82

    CAS  Google Scholar 

  46. Karthik R, Govindasamy M, Chen S-M (2016) Colloid Interface Sci 475:46

    CAS  Google Scholar 

  47. Pilehvar S, Mehta J, Dardenne F (2012) Anal Chem 84:6753

    CAS  PubMed  Google Scholar 

  48. Talebizadehsardari P, Aramesh-Boroujeni Z, Foroughi MM (2020) Microchem J 159:105535

    CAS  Google Scholar 

  49. Vinothkumar V, Abinaya M, Chen S-M (2021) J Solid State Chem 302:122392

    CAS  Google Scholar 

  50. Jakubec P, Urbanová V, Medříková Z, Zbořil R (2016) Chem Eur J 22:14279

    CAS  PubMed  Google Scholar 

  51. Kong F-Y, Luo Y, Zhang J-W (2016) J Electroanal Chem 781:389

    CAS  Google Scholar 

  52. Govindasamy M, Chen S-M, Mani V (2017) Colloid Interface Sci 485:129

    CAS  Google Scholar 

  53. Kong F-Y, Chen T-T, Wang J-Y (2016) Sens Actuators B: Chem 225:298

    CAS  Google Scholar 

  54. Zhai H, Liang Z, Chen Z (2015) Electrochim Acta 171:105

    CAS  Google Scholar 

  55. Niu X, Bo X, Guo L (2021) Food Chem 364:130368

    CAS  PubMed  Google Scholar 

  56. Zoubir J, Bakas I, Qourzal S (2023) J Appl Electrochem 53:1279

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Mao AR, Li H, Jin D (2015) Talanta 144:252

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jallal Zoubir.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zoubir, J., Elkhotfi, Y., Tounsi, A. et al. A highly sensitive chloramphenicol detection sensor based on a carbon-graphite nanocomposite modified with silver nanoparticles application: human serum and urine. Monatsh Chem 154, 837–848 (2023). https://doi.org/10.1007/s00706-023-03090-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-023-03090-3

Keywords

Navigation