Skip to main content
Log in

Smart tool for novichok: a concise review on real-time detection techniques

  • Review
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Novichok agents have evolved as weapon of mass destruction. Its use has been reported in the previous decade mostly for providing detrimental effect on living organisms, surrounding ecosystem, and the environment. Novichok agents have a very high fatal effect due to its ability to bind with acetylcholinesterase, resulting in crippling of central nervous system. So, rapid and precise detection of novichok agents have become one of the promising aspects with much evident for the forensic perspective. Hence, this manuscript is aimed to emphasize on various novel detection techniques reported for novichok detection and the possible future aspect on the development of detection technology.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kloske M, Witkiewicz Z (2019) Chemosphere 221:672

    CAS  PubMed  Google Scholar 

  2. Jett DA, Spriggs SM (2020) Neurobiol Dis 133:104335

    CAS  PubMed  Google Scholar 

  3. Sajid H, Khan S, Ayub K, Mahmood T (2021) J Mol Model 27:1

    Google Scholar 

  4. Madsen JM, Darling RG (2006) Future biologic and chemical weapons. In: Ciottone GR (ed) Disaster medicine, chapter 64. Mosby, Inc

    Google Scholar 

  5. Chen L, Wu D, Yoon J (2018) ACS Sens 3:27

    CAS  PubMed  Google Scholar 

  6. Li X, Lv Y, Chang S, Liu H, Mo W, Ma H, Zhou C, Zhang S, Yang B (2019) Anal Chem 91:10927

    CAS  PubMed  Google Scholar 

  7. Ganesan K, Raza SK, Vijayaraghavan R (2010) J Pharm Bioallied Sci 2:166

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Saalbach K (2021) A Brief Introduction to Nerve Agents. Universität Osnabrück. https://osnadocs.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-202103034076. Accessed 02 Jun 2022

  9. Burnworth M, Rowan SJ, Weder C (2007) Eur J Chem 13:7828

    CAS  Google Scholar 

  10. Chai PR, Berlyand Y, Goralnick E, Goldfine CE, Vanrooyen MJ, Hryhorczuk D, Erickson TB (2022) Toxicol Commun 6:52

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hrvat NM, Kovarik Z (2020) ArhHig Rada Toksikol 71:284

    Google Scholar 

  12. Diauudin FN, Rashid JIA, Knight VF, Yunus WMZW, Ong KK, Kasim NAM, Halim NA, Noor SAM (2019) Sens Bio-Sens Res 26:100305

    Google Scholar 

  13. Jacquet P, Remy B, Bross RP, Grol MV, Gaucher F, Chabriere E, Koning MC, Daude D (2021) Int J Mol Sci 22:8152

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Qi F, Yan C, Meng Z, Li S, Xu J, Hu X, Xue M (2019) Anal Bioanal Chem 411:2577

    CAS  PubMed  Google Scholar 

  15. Figueiredo TH, Apland JP, Braga MF, Marini AM (2018) Epilepsia 59:92

    PubMed  PubMed Central  Google Scholar 

  16. BBC News (2020) UK Media. https://www.bbc.com/news/world-europe-43377698.amp. Accessed 02 Jun 2022

  17. Leikas T (2021) Bertin Environics. https://environics.fi/blog/novichok-newbie-in-town/. Accessed 02 Jun 2022

  18. Nepovimova E, Kuca K (2018) Food Chem Toxicol 121:343

    CAS  PubMed  Google Scholar 

  19. Franca TC, Kitagawa DA, Cavalcante SFDA, Silva JA, Nepovimova E, Kuca K (2019) Int J Mol Sci 20:1222

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee JY, Lim KC, Kim HS (2021) Mol 26:1059

    CAS  Google Scholar 

  21. Therapeutics & Toxins News (2019) AACC https://www.aacc.org/-/media/Files/Divisions/TDM-TOX/TDMTox-newsletter_June-2019.pdf?la=en&hash=D7B913E0AF6A91CB7747BC26E16B503EEBD5403B. Accessed 02 Jun 2022

  22. Costanzi S, Koblentz GD (2022) Nonproliferation Rev 28:95

    Google Scholar 

  23. Porteous H (2010) State secrets: An insider's chronicle of the russian chemical weapons program. In: Vil Mirzayanov S (ed) Outskirts Press, Inc, Denver, CO, pp 537–539. https://doi.org/10.1080/13518046.2010.503469

  24. Rahmania TA, Wardhani BWK, Renesteen E, Harahap Y (2021) Pharm Sci 8:2

    Google Scholar 

  25. Chai PR, Hayes BD, Erickson TB, Boyer EW (2018) Toxicol Commun 2:45

    PubMed  PubMed Central  Google Scholar 

  26. Patocka J (2018) Mil Med Sci Lett 87:1

    Google Scholar 

  27. Ellison DH (2007) Handbook of chemical and biological warfare agents. CRC Press, Boca Raton, FL

    Google Scholar 

  28. Hatfill SJ (2019) J Am Phys Surg 24:19

    Google Scholar 

  29. Noort D, Fidder A, Oeveren DR, Busker R, Schans MJ (2021) Chem Res Toxicol 34:1926

    CAS  PubMed  Google Scholar 

  30. Mirbabaei F, Mohammad-Khah A, Naseri MT, Babri M, Faraz SM, Hosseini SE, Ashrafi D (2022) Anal Bioanal Chem 414:3429

    CAS  PubMed  Google Scholar 

  31. Kammer M, Kussrow A, Carter MD, Isenberg SL, Johnson RC, Batchelor RH, Jackson GW, Bornhop DJ (2019) Biosens Bioelectron 131:119

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Harvey SP, McMahon LR, Berg FJ (2020) Heliyon 6:e03153

    PubMed  PubMed Central  Google Scholar 

  33. Imasaka T, Imasaka T (2019) 49th Winter colloquium on the physics of quantum electronics. https://www.pqeconference.com/pqe2019/Abstracts/513p.pdf. Accessed 02 Jun 2022

  34. Bhakhoa H, Rhyman L, Ramasami P (2019) R Soc Open Sci 6:181831

    PubMed  PubMed Central  Google Scholar 

  35. Jeong K, Choi J (2019) R Soc Open Sci 6:190414

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Jindal MK, Mainuddin M, Veerabuthiran S, Razdan AK (2020) IEEE Sens J 21:4085

    Google Scholar 

  37. Jeong K, Ryu TI, Hwang SR, Cho Y, Lim KC, Yoon UH, Lee JY, Yoon YW, Jeong HJ (2022) Sci Rep 12:20288

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Imrit YA, Bhakhoa H, Sergeieva T, Danes S, Savoo N, Elzagheid MI, Rhyman L, Andrada DM, Ramasami P (2020) RSC Adv 10:27884

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zeman J, Vetchy D, Pavlokova S, Franc A, Pitschmann V (2020) JPBA Open 179:113004

    CAS  Google Scholar 

  40. Zeman J, Pavlokova S, Vetchy D, Pitschmann V (2019) Ces Slov Farm 69:24

    Google Scholar 

  41. Zeman J, Vetchy D, Pavlokova S, Franc A, Pitschmann V, Dominik M, Urbanova M, Sedenkova I (2019) Enzyme Microb Technol 128:26

    CAS  PubMed  Google Scholar 

  42. Otsuka M, Yamaguchi A, Miyaguchi H (2022). Forensic Toxicol. https://doi.org/10.1007/s11419-022-00656-4

    Article  PubMed  Google Scholar 

  43. John H, Dentzel M, Siegert M, Thiermann H (2022) Anal Chem 94:2048

    CAS  PubMed  Google Scholar 

  44. de Bruin-Hoegee M, Lamriti L, Langenberg JP, Olivier RC, Chau LF, van der Schans MJ, Noort D, van Asten AC (2023) Anal Methods 15:142

    PubMed  Google Scholar 

  45. Brunka Z, Ryl J, Brushtulli P, Gromala D, Walczak G, Zięba S, Pieśniak D, Sein Anand J, Wiergowski M (2022) Toxics 10:468

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Valdez CA, Leif RN (2021) Molecules 26:4631

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jung H, Heo J, Park N, Lim KC, Jung H, Do Cao V, Joung S (2023) J Hazard Mater 451:131150

    CAS  PubMed  Google Scholar 

  48. Stone R (2020) Science. https://www.science.org/content/article/how-german-military-scientists-likely-identified-nerve-agent-used-attack-alexei-navalny#:~:text=Red%20blood%20cells%20have%20AChE,%2C%20San%20Diego%20(UCSD). Accessed 02 Jun 2022

  49. Jeong WH, Lee JY, Lim KC, Kim HS (2021) Molecules 26:3810

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mia R, Cragg PJ, Wallace KJ (2021) J Lumin 235:118053

    CAS  Google Scholar 

  51. Meng W, Pei Z, Wang Y, Sun M, Xu Q, Cen J, Guo K, Xiao K, Li Z (2021) J Hazard Mater 410:124811

    CAS  PubMed  Google Scholar 

  52. Peplow M (2018) Chem Eng News 96:1

    Google Scholar 

  53. Islamoglu T, Atilgan A, Moon SY, Peterson GW, DeCoste JB, Hall M, Hupp JT, Farha OK (2017) Chem Mater 29:2672

    CAS  Google Scholar 

  54. Gupta M, Lee HI (2017) Macromolecules 50:6888

    CAS  Google Scholar 

  55. Fan S, Zhang G, Dennison GH, FitzGerald N, Burn PL, Gentle IR, Shaw PE (2020) Adv Mater 32:1905785

    CAS  Google Scholar 

  56. Lu Z, Fan W, Shi X, Black CA, Fan C, Wang F (2018) Sens Actuators B Chem 255:176

    CAS  Google Scholar 

  57. Puglisi R, Mineo PG, Pappalardo A, Gulino A, Trusso Sfrazzetto G (2019) Molecules 24:2160

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Mukherjee S, Gupta RD (2020) J Toxicol 2020:3007984

    PubMed  PubMed Central  Google Scholar 

  59. Yamaguchi A, Miyaguchi H, Ishida A, Tokeshi M (2021) ACS Appl Bio Mater 4:6512

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors acknowledge The Campus Director, NFSU-Tripura for providing appropriate resources and working condition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanay Naha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, D., Das, A. & Naha, S. Smart tool for novichok: a concise review on real-time detection techniques. Monatsh Chem 154, 673–682 (2023). https://doi.org/10.1007/s00706-023-03087-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-023-03087-y

Keywords

Navigation