Skip to main content
Log in

A computational assessment of the O−H⋅⋅⋅O intramolecular hydrogen-bonding in substituted phenalenes: diverse degrees of covalence

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The present article demonstrates a quantum chemical approach based on the Quantum Theory of Atoms-In-Molecules (QTAIM) to assess the O−H⋅⋅⋅O intramolecular hydrogen-bonding (IMHB) interactions in a series of phenalene derivatives, namely, 9-hydroxy-2,4-dihydro-1H-phenalen-1-one (9HP1O), 2-hydroxy-9,9a-dihydro-1H-phenalen-1-one (2HP1O), and 3-hydroxy-1H-phenalen-2(4H)-one (3HP2O). The topological parameters and IMHB energies have been calculated based on density functional theory (using B3LYP and CAM-B3LYP hybrid functionals, and M06-2X and LC-ωPBE functionals) and Møller-Plesset perturbation theory (MP2) approaches. The calculated geometrical and topological parameters along with the IMHB energies show the different degrees of covalence in the IMHB interactions in the studied molecular structures, and thus reveal the inequivalence of substitution pair positions in the studied phenalene derivatives. The results derived from QTAIM analyses of the studied molecules are further corroborated from noncovalent interaction analysis including a visual portrayal of the noncovalent interactions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

None.

References

  1. Eskandari K, Alsenoy CV (2014) J Comput Chem 35:1883

    Article  CAS  PubMed  Google Scholar 

  2. Bader RFW (2009) J Phys Chem A 113:10391

    Article  CAS  PubMed  Google Scholar 

  3. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  4. Bader RFW (1991) Chem Rev 91:893

    Article  CAS  Google Scholar 

  5. Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules. Wiley-VCH, Weinheim

    Book  Google Scholar 

  6. Matta CF, Hernández-Trujillo J, Tang TH, Bader RFW (2003) Chem Eur J 9:1940

    Article  CAS  PubMed  Google Scholar 

  7. Hernández-Trujillo J, Matta CF (2007) Struct Chem 18:849

    Article  Google Scholar 

  8. Eskandari K (2012) J Mol Model 18:3481

    Article  CAS  PubMed  Google Scholar 

  9. Pakiari A, Eskandari K (2007) J Mol Struct (Theochem) 806:1

    Article  CAS  Google Scholar 

  10. Ganguly A, Paul BK, Guchhait N (2017) Comput Theor Chem 1117:108

    Article  CAS  Google Scholar 

  11. Paul BK (2019) J Phys Org Chem 32:1

    Article  Google Scholar 

  12. Paul BK, Guchhait N (2013) Chem Phys 412:58

    Article  CAS  Google Scholar 

  13. Ganguly A (2021) Struct Chem 32:431

    Article  CAS  Google Scholar 

  14. Bofill JM, Olivella S, Solé A, Anglada JM (1999) J Am Chem Soc 121:1337

    Article  CAS  Google Scholar 

  15. Bach A, Lentz D, Luger P (2001) J Phys Chem A 105:7405

    Article  CAS  Google Scholar 

  16. Matta CF, Castillo N, Boyd RJ (2005) J Phys Chem A 109:3669

    Article  CAS  PubMed  Google Scholar 

  17. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51

    Article  CAS  Google Scholar 

  18. Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615

    Article  CAS  PubMed  Google Scholar 

  19. Biegler-König F, Schönbohm J, Bayles D (2001) J Comput Chem 22:524

    Google Scholar 

  20. Cioslowski J, Mixon ST, Edwards WD (1991) J Am Chem Soc 113:1083

    Article  CAS  Google Scholar 

  21. Cioslowski J, Mixon ST (1992) J Am Chem Soc 114:4382

    Article  CAS  Google Scholar 

  22. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  23. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, New York

    Google Scholar 

  24. Grabowski SJ (2006) Hydrogen bonding - new insights. Series: Leszczynski J (ed), Challenges and advances in computational chemistry and physics. Springer, New York

  25. Perrin CL, Nielson JB (1997) Annu Rev Phys Chem 48:511

    Article  CAS  PubMed  Google Scholar 

  26. Gerlt JA, Kreevoy MM, Cleland WW, Frey PA (1997) Chem Biol 4:259

    Article  CAS  PubMed  Google Scholar 

  27. Głowacki ED, Irimia-Vladu M, Bauer S, Sariciftci NS (2013) J Mater Chem B 1:3742

    Article  PubMed  Google Scholar 

  28. Paul BK, Mahanta S, Singh RB, Guchhait N (2010) J Phys Chem A 114:2618

    Article  CAS  PubMed  Google Scholar 

  29. Bader RFW (1985) Acc Chem Res 18:9

    Article  CAS  Google Scholar 

  30. Bader RFW (2010) J Phys Chem A 114:7431

    Article  CAS  PubMed  Google Scholar 

  31. Popelier PLA (1998) J Phys Chem A 102:1873

    Article  CAS  Google Scholar 

  32. Lazzeretti P (2004) Phys Chem Chem Phys 6:217

    Article  CAS  Google Scholar 

  33. Grabowski SJ (2001) J Phys Chem A 105:10739

    Article  CAS  Google Scholar 

  34. Grabowski SJ (2011) Chem Rev 111:2597

    Article  CAS  PubMed  Google Scholar 

  35. Grosch AA, van der Lubbe SCC, Guerra CF (2018) J Phys Chem A 122:1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Domagała M, Simon S, Palusiak M (2022) Int J Mol Sci 23:233

    Article  Google Scholar 

  37. Mahanta S, Paul BK, Singh RB, Guchhait N (2010) J Comput Chem 32:1

    Article  Google Scholar 

  38. Espinosa E, Lecomte C, Molinsa E (1999) Chem Phys Lett 300:745

    Article  CAS  Google Scholar 

  39. Emamian S, Lu T, Kruse H, Emamian H (2019) J Comput Chem 40:28681

    Article  Google Scholar 

  40. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang W (2010) J Am Chem Soc 132:6498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bader RFW, Essen H (1984) J Chem Phys 80:1943

    Article  CAS  Google Scholar 

  42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A 02-SMP. Gaussian Inc, Wallingford

    Google Scholar 

  43. Foresman JB, Frisch Æ (1996) Exploring Chemistry with Electronic Structure Methods, 2nd edn. Gaussian Inc, Pittsbugh

    Google Scholar 

  44. Silva TC, dos Santos PM, Castrode AA, Rocha MVJ, Ramalho TC (2018) Theor Chem Acc 137:146

    Article  Google Scholar 

  45. Bayat A, Fattahi A (2018) J Phys Org Chem 32:e3919

    Article  Google Scholar 

  46. Vydrov OA, Scuseria GE (2006) J Chem Phys 125:234109

    Article  PubMed  Google Scholar 

  47. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  PubMed  Google Scholar 

  48. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  49. Mota AJ, Neuhold J, Drescher M, Lemouzy S, González L, Maulide N (2017) Org Biomol Chem 15:7572

    Article  CAS  PubMed  Google Scholar 

  50. Biegler-König F, Schönbohm J, Bayles D (2001) J Comput Chem 22:24

    Google Scholar 

  51. Lu T, Chen F (2012) J Comput Chem 33:580

    Article  PubMed  Google Scholar 

  52. Lu T, Chen F (2012) J Mol Graph Model 38:314

    Article  PubMed  Google Scholar 

  53. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijan K. Paul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 913 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, B.K., Rakshit, P. A computational assessment of the O−H⋅⋅⋅O intramolecular hydrogen-bonding in substituted phenalenes: diverse degrees of covalence. Monatsh Chem 154, 605–613 (2023). https://doi.org/10.1007/s00706-023-03070-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-023-03070-7

Keywords

Navigation