Skip to main content

Advertisement

Log in

Simultaneous determination of 4-aminophenol and paracetamol based on CS-Ni nanocomposite-modified screen-printed disposable electrodes

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In the present work, chitosan-coated nickel nanoparticles (CS-Ni) were successfully prepared onto screen-printed electrode (SPE) by electrodeposition method with the assistance of an anionic surfactant of sodium dodecyl sulfate (SDS) for the individual and simultaneous sensing of 4-aminophenol (4-AP) and paracetamol (PA). The as-prepared sensor was characterized via scanning electron microscopy, X-ray diffraction, and fourier transform infrared techniques. The electrochemical catalytic behaviors of the 4-AP and PA on the fabricated NiNPs-SDS/CS/SPE electrode were explored using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The NiNPS-SDS/CS modified screen-printed electrode demonstrated excellent electrocatalytic activity for 4-AP and PA, indicating that nickel microstructures have a high specific surface area, excellent electrical conductivity, and high electrocatalytic activity. The results indicate that CV and DPV could be easily applied to determine 4-AP and PA using the fabricated sensor under optimized conditions. However, CV is preferred for both analysts’ sensing, with the largest linear range from 1 to 500 μM for 4-AP (R2 = 0.999) and 1 μM to 2 mM (R2 = 0.997) for PA, respectively. In terms of sensitivity and detection limit, DPVs response appeared to be a better technique choice, as it revealed the highest sensitivity values of 0.959 µA µM−1 cm−2 for 4-AP and 1.163 µA µM−1 cm−2 for PA, with the lowest detection limits of 0.06 and 0.04 μM for 4-AP and PA (S/= 3), respectively. With a high recovery rate, good selectivity, excellent reproducibility, and strong anti-interference ability, the modified sensor was successfully applied to the simultaneous detection of 4-AP and PA in pharmaceutical tablets. It is expected to be widely used in actual sample detection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Chetankumar K, Kumara Swamy BE, Sharma SC (2021) Microchem J 160:105729

    Article  CAS  Google Scholar 

  2. Kenarkob M, Pourghobadi Z (2019) Microchem J 146:1019

    Article  CAS  Google Scholar 

  3. Nemakal M, Aralekallu S, Mohammed I, Pari M, Venugopala Reddy KR, Sannegowda LK (2019) Electrochim Acta 318:342

    Article  CAS  Google Scholar 

  4. Sun L, Yang M, Guo H, Zhang T, Wu N, Wang M, Yang F, Zhang J, Yang W (2022) Colloids Surf A Physicochem Eng Asp 647:129092

    Article  CAS  Google Scholar 

  5. Li M, Wang W, Chen Z, Song Z, Luo X (2018) Sens Actuators B Chem 260:778

    Article  CAS  Google Scholar 

  6. Khaskheli AR, Fischer J, Barek J, Vyskočil V, Sirajuddin, Bhanger MI (2013) Electrochim Acta 101:238

    Article  CAS  Google Scholar 

  7. Metters JP, Kadara RO, Banks CE (2011) Analyst 136:1067

    Article  CAS  PubMed  Google Scholar 

  8. Khairy M, Mahmoud BG, Banks CE (2018) Sens Actuators B Chem 259:142

    Article  CAS  Google Scholar 

  9. Khorshed AA, Khairy M, Elsafty SA, Banks CE (2019) Anal Methods 11:282

    Article  CAS  Google Scholar 

  10. Chelaghmia ML, Fisli H, Nacef M, Brownson DAC, Affoune AM, Satha H, Banks CE (2021) Anal Methods 13:2812

    Article  CAS  PubMed  Google Scholar 

  11. Mahmoud BG, Khairy M, Rashwan FA, Banks CE (2017) Anal Chem 89:2170

    Article  CAS  PubMed  Google Scholar 

  12. Chelaghmia ML, Nacef M, Affoune AM, Pontié M, Derabla T (2018) Electroanalysis 30:1

    Article  Google Scholar 

  13. Chelaghmia ML, Nacef M, Fisli H, Affoune AM, Pontié M, Makhlouf A, Derabla T, Khelifi O, Aissat F (2020) RSC Adv 10:36941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chelaghmia ML, Nacef M, Affoune AM (2012) J Appl Electrochem 42:819

    Article  CAS  Google Scholar 

  15. Nacef M, Chelaghmia ML, Khelifi O, Pontié M, Djelaibia M, Guerfa R, Bertagna V, Vautrin-Ul C, Fares A, Affoune AM (2021) Int J Hydrogen Energy 46:37670

    Article  CAS  Google Scholar 

  16. Nacef M, Chelaghmia ML, Affoune AM, Pontié M (2019) Electroanalysis 31:113

    Article  CAS  Google Scholar 

  17. Kihal R, Fisli H, Chelaghmia ML, Drissi W, Boukharouba C, Abdi S, Nacef M, Affoune AM, Pontié M (2022) J Appl Electrochem 53:315

    Article  Google Scholar 

  18. Prinith NS, Manjunatha JG (2019) Mater Sci Energy Technol 2:408

    Google Scholar 

  19. Yang Y, Wang Q, Qiu W, Guo H, Gao F (2016) Phys Chem C 120:9794

    Article  CAS  Google Scholar 

  20. Guibal E (2005) Prog Polym Sci 30:71

    Article  CAS  Google Scholar 

  21. Hassaninejad-Darzi SK (2014) J Electroceramics 33:252

    Article  CAS  Google Scholar 

  22. Mao A, Li H, Jin D, Yu L, Hu X (2015) Talanta 144:252

    Article  CAS  PubMed  Google Scholar 

  23. Akhter S, Basirun WJ, Alias Y, Johan MR, Bagheri S, Shalauddin M, Ladan M, Anuar NS (2018) Anal Biochem 551:29

    Article  CAS  PubMed  Google Scholar 

  24. Sabnis S, Block LH (1997) Polym Bull 39:67

    Article  CAS  Google Scholar 

  25. Ben Seghir B, Benhamza MH (2017) J Food Meas Charact 11:1137

    Article  Google Scholar 

  26. Ferrari AGM, Foster CW, Kelly PJ, Brownson DAC, Banks CE (2018) Biosensors 8:53

    Article  CAS  Google Scholar 

  27. Han HS, You JM, Seol H, Jeong H, Jeon S (2014) Sens Actuators B Chem 194:460

    Article  CAS  Google Scholar 

  28. Laviron E (1979) J Electroanal Chem 101:19

    Article  CAS  Google Scholar 

  29. Shi P, Xue R, Wei Y, Lei X, Ai J, Wang T, Shi Z, Wang X, Wang Q, Mohammed Soliman F, Guo H, Yang W (2020) Arab J Chem 13:1040

    Article  CAS  Google Scholar 

  30. Wang H, Zhang S, Li S, Qu J (2018) Talanta 178:188

    Article  CAS  PubMed  Google Scholar 

  31. Sun L, Guo H, Pan Z, Liu B, Wu N, Liu Y, Lu Z, Wei X, Yang W (2022) Microchem J 182:107879

    Article  CAS  Google Scholar 

  32. Guan Q, Guo H, Wu N, Cao Y, Wang M, Zhang L, Yang W (2021) Colloids Surf A Physicochem Eng Asp 630:127624

    Article  CAS  Google Scholar 

  33. Mehretie S, Admassie S, Hunde T, Tessema M, Solomon T (2011) Talanta 85:1376

    Article  CAS  PubMed  Google Scholar 

  34. Yin H, Shang K, Meng X, Ai S (2011) Microchim Acta 175:39

    Article  CAS  Google Scholar 

  35. Yin H, Meng X, Xu Z, Chen L, Ai S (2012) Anal Methods 4:1445

    Article  CAS  Google Scholar 

  36. Dou N, Zhang S, Qu J (2019) RSC Adv 9:31440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Manjunatha KG, Swamy BEK, Madhuchandra HD, Vishnumurthy KA (2021) Chem Data Collect 31:100604

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to the financial support within the General Direction of Scientific Research and Technology Development of the Algerian ministry of higher education and scientific research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Lyamine Chelaghmia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 670 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdi, S., Chelaghmia, M.L., Kihal, R. et al. Simultaneous determination of 4-aminophenol and paracetamol based on CS-Ni nanocomposite-modified screen-printed disposable electrodes. Monatsh Chem 154, 563–575 (2023). https://doi.org/10.1007/s00706-023-03062-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-023-03062-7

Keywords

Navigation