Skip to main content
Log in

Modified magnetic cellulose supported o-phenylenediamine nickel(II) complex as a new heterogeneous catalyst for the synthesis of sulfonamide-substituted 4-hydroxycoumarins

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Herein, the synthesis reported the characterization and application of immobilized nickel complex on cellulose@Fe3O4 (Ni-oPDA@Cell@Fe3O4) as a new heterogeneous catalyst. First, n-PrCl-Cell was synthesized by functionalization of cellulose with Cl(CH2)3Si(OCH3)3. Then, the n-PrCl-Cell reacted heterocyclic compound with o-phenylenediamine (oPDA) to give oPDA@Cell. Afterward, oPDA@Cell@Fe3O4 was fabricated through chemical modification of Fe3O4 nanoparticles with oPDA@Cell in the presence of urea/NaOH. Finally, Ni was loaded onto the synthesized oPDA@Cell@Fe3O4 by slowly adding of nickel nitrate in ethanol to prepare Ni-oPDA@Cell@Fe3O4 magnetic nanocatalyst. The nanocomposite was characterized by various techniques such as FT-IR, XRD, EDS, FE-SEM, TEM, and TGA techniques. The resultant nanocomposite exhibits remarkable catalytic efficacy for synthesizing sulfonamide-substituted 4-hydroxycoumarins via a three-component reaction of aryl aldehydes, p-toluenesulfonamide, and 4-hydroxycoumarin. Its recoverability was examined in several runs, which showed no appreciable loss after six runs. The key features of the present protocol include the reusability of the catalyst, easy accessibility to the starting materials, easy magnetic recovery, and conducting the reactions in eco-friendly and cost-effective conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All the presented data in the manuscript can be available.

References

  1. Hamed AR, Mostafa EA (2013) J Heterocycl Chem 51:106

    Google Scholar 

  2. Mohammadikish M, Yarahmadi S (2020) J Phys Chem Solids 141:109434

    CAS  Google Scholar 

  3. Wang H, Xia B, Yan Y, Li N, Wang JY, Wang X (2013) J Phys Chem B 117:5606

    CAS  PubMed  Google Scholar 

  4. Gong Y, Li M, Li H, Wang Y (2015) Green Chem 17:715

    CAS  Google Scholar 

  5. Lwin S, Wachs IE (2016) ACS Catal 6:272

    CAS  Google Scholar 

  6. Zhao Y, Yang KR, Wang Z, Yan X, Cao S, Ye Y, Dong Q, Zhang X, Thorne JE, Jin L, Materna KL (2018) Proc Natl Acad Sci 115:2902

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Bezemer GL, Radstake PB, Koot V, Van Dillen AJ, Geus JW, De Jong KP (2006) J Catal 237:291

    CAS  Google Scholar 

  8. Konwar LJ, Boro J, Deka D (2014) Renew Sust Energ Rev 29:546

    CAS  Google Scholar 

  9. Takahashi T, Watahiki T, Kitazume S, Yasuda H, Sakakura T (2006) Chem Commun 15:1664

    Google Scholar 

  10. Khalafi-Nezhad A, Shahidzadeh ES, Sarikhani S, Panahi F (2013) J Mol Catal A 379:1

    CAS  Google Scholar 

  11. Veerakumar P, Velayudham M, Lu KL, Rajagopal S (2011) Catal Sci Technol 1:1512

    CAS  Google Scholar 

  12. Kusuma RI, Hadinoto JP, Ayucitra A, Soetaredjo FE, Ismadji S (2013) Appl Clay Sci 74:121

    CAS  Google Scholar 

  13. Bharimalla AK, Deshmukh SP, Vigneshwaran N, Patil PG, Prasad V (2017) Polym Plast Technol Eng 56:805

    CAS  Google Scholar 

  14. Harris D, Bulone V, Ding SY, De Bolt S (2010) Plant Physiol 153:420

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Eyley S, Thielemans W (2014) Nanoscale 6:7764

    CAS  PubMed  Google Scholar 

  16. Ogawa K, Maki Y (2003) Biosci Biotechnol Biochem 67:2652

    CAS  PubMed  Google Scholar 

  17. Elsby MR, Baker RT (2020) Chem Soc Rev 49:8933

    CAS  PubMed  Google Scholar 

  18. Mahmudov KT, Gurbanov AV, Guseinov FI, Silva MFCG (2019) Coord Chem Rev 387:32

    CAS  Google Scholar 

  19. Marset X, Crespo JT, Martínez-Espinosa RM, Guillena G, Ramón DJ (2019) Green Chem 21:4127

    CAS  Google Scholar 

  20. Wang X, Yang M, Kuang Y, Liu JB, Fan X, Wu J (2020) Chem Commun 56:3437

    CAS  Google Scholar 

  21. Koohgard M, Hosseini-Sarvari M (2020) Catal Sci Technol 10:6825

    CAS  Google Scholar 

  22. Blum SP, Karakaya T, Schollmeyer D, Klapars A, Waldvogel SR (2021) Angew Chem Int Ed 60:5056

    CAS  Google Scholar 

  23. Chen Y, Murray PRD, Davies AT, Willis MC (2018) J Am Chem Soc 140:8781

    CAS  PubMed  Google Scholar 

  24. Craven GB, Affron DP, Raymond PN, Mann DJ, Armstrong A (2019) Med Chem Commun 10:158

    CAS  Google Scholar 

  25. Mohamadi-Tanuraghaj H, Farahi M (2018) RSC Adv 8:27818

    Google Scholar 

  26. Keshavarz R, Farahi M (2022) RSC Adv 12:3584

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Mohamadi-Tanuraghaj H, Farahi M (2019) Monatsh Chem 150:1841

    Google Scholar 

  28. Mohamadi-Tanuraghaj H, Farahi M (2019) New J Chem 43:4823

    Google Scholar 

  29. Etemad-Gholtash J, Farahi M (2018) RSC Adv 8:40962

    Google Scholar 

  30. Etemad-Gholtash J, Farahi M, Karami B, Abdollahi M (2020) Acta Chim Slov 67:866

    Google Scholar 

  31. Farahi M, Davoodi M, Tahmasebi M (2016) Tetrahedron Lett 57:1582

    CAS  Google Scholar 

  32. Farahi M, Karami B, Keshavarz R, Khosravian F (2017) RSC Adv 7:46644

    CAS  Google Scholar 

  33. Farahi M, Tamaddon F, Karami B, Pasdar S (2015) Tetrahedron Lett 56:1887

    CAS  Google Scholar 

  34. Karami B, Farahi M, Akrami S, Elhamifar D (2018) New J Chem 42:12811

    CAS  Google Scholar 

  35. Karami B, Farahi M, Banaki Z (2015) Synlett 26:1804

    CAS  Google Scholar 

  36. Karamipour A, Khadiv-Parsi P, Zahedi P, Moosavian SMA (2020) Int J Biol Macromol 154:1132

    CAS  PubMed  Google Scholar 

  37. Ghorbani-Choghamarani A, Tahmasbi B, Moradi P (2016) Appl Organomet Chem 30:422

    CAS  Google Scholar 

  38. Nouri K, Hajjami M, Azadi G (2018) Catal Lett 148:671

    CAS  Google Scholar 

  39. Ramezanpour M, Naghizadeh-Raeisi S, Shahidi SA, Ramezanpour S (2020) Micro-Nano Lett 15:390

    CAS  Google Scholar 

  40. Aqeel-Ashraf M, Liu Z, Peng WX, Gao C (2020) Catal Lett 150:683

    Google Scholar 

  41. Jokar M, Naeimi H, Nabi-Bidhendi G (2021) Appl Organomet Chem 35:6266

    Google Scholar 

  42. Bahrami S, Jamehbozorgi S, Moradi S, Ebrahimi S (2019) J Chin Chem Soc 67:603

    Google Scholar 

  43. Maleki A, Taheri-Ledari R, Ghalavand R, Firouzi-Haji R (2020) J Phys Chem Solids 136:109200

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Yasouj University Research Council for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahnaz Farahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2447 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahanbakhshi, A., Farahi, M. Modified magnetic cellulose supported o-phenylenediamine nickel(II) complex as a new heterogeneous catalyst for the synthesis of sulfonamide-substituted 4-hydroxycoumarins. Monatsh Chem 154, 249–258 (2023). https://doi.org/10.1007/s00706-023-03035-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-023-03035-w

Keywords

Navigation