Skip to main content
Log in

Investigate the effect of Zn12O12, AlZn11O12, and GaZn11O12 nanoclusters in the carbamazepine drug detection in gas and solvent phases: a comparative DFT study

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

To find a potential sensor for the carbamazepine (CBZ) drug, pure and doped Zn12O12 nanoclusters were utilized to adsorption CBZ using the density functional theory (DFT) calculation. After adsorption of CBZ on the Zn12O12, AlZn11O12, and GaZn11O12 nanoclusters, the adsorption energies were calculated at −104.31, −142.51, and −94.89 kJ mol−1, respectively. After the adsorption process, electrical conductivity changed to −4.36%, −50.30%, and −53.71% in the Zn12O12, AlZn11O12, and GaZn11O12, respectively. Thus, it is clear that the AlZn11O12 and GaZn11O12 nanoclusters indicated a considerable change in the electrical conductivity, and these changes could be considered the signal for the detection of CBZ. Although the sensitivity of AlZn11O12 and GaZn11O12 were high, only GaZn11O12 showed an ideal recovery time for CBZ desorption from nanoclusters. Furthermore, solvent calculations indicated that the nanoclusters also could be used in biological samples. UV–Vis calculation indicated after the interaction of CBZ with GaZn11O12 spectrum shift significantly to the higher wavelength region (red shift). Thus, it can be concluded that the GaZn11O12 nanocluster is an appropriate candidate for CBZ detection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Datar PA (2015) J Pharm Anal 5:213

    PubMed Central  PubMed  Google Scholar 

  2. Liguori C, Izzi F, Manfredi N, Mercuri NB, Placidi F (2018) Epilepsy Behav Case Rep 10:35

    PubMed Central  PubMed  Google Scholar 

  3. Choi Y, Wang J, Zhu Y, Lai WF (2021) Indian J Pharm Educ Res 55:63

    Google Scholar 

  4. Hoseininezhad-Namin MS, Rahimpour E, AysilOzkan S, Pargolghasemi P, Jouyban A (2022) J Mol Liq 353:118750

    CAS  Google Scholar 

  5. Griner-Sosanko E, Lower DR, Virji MA, Krasowski MD (2007) Biomed Chromatogr 21:225

    Google Scholar 

  6. Thormann W, Theurillat R, Wind M, Kuldvee R (2001) J Chromatogr A 924:429

    CAS  PubMed  Google Scholar 

  7. Rani S, Malik AK (2012) J Sep Sci 35:2970

    CAS  PubMed  Google Scholar 

  8. Abdel-Hamid ME (2000) Farmaco 55:136

    CAS  PubMed  Google Scholar 

  9. Su S, Wu W, Gao J, Lu J, Fan C (2012) J Mater Chem 22:18101

    CAS  Google Scholar 

  10. Yang M, Li C, Zhang Y, Jia D, Zhang X, Hou Y, Li R, Wang J (2017) Int J Mach Tools Manuf 122:55

    Google Scholar 

  11. Yang M, Li C, Zhang Y, Jia D, Li R, Hou Y, Cao H, Wang J (2019) Ceram Int 45:14908

    CAS  Google Scholar 

  12. Tang L, Zhang Y, Li C, Zhou Z, Nie X, Chen Y, Cao H, Liu B, Zhang N, Said Z, Debnath S, Jamil M, Ali HM, Sharma S (2022) Chin J Mech Eng Engl Ed 35:1

    Google Scholar 

  13. Chupradit S, Km Nasution M, Rahman HS, Suksatan W, Turki Jalil A, Abdelbasset WK, Bokov D, Markov A, Fardeeva IN, Widjaja G, Shalaby MN, Saleh MM, Mustafa YF, Surendar A, Bidares R (2022) Anal Biochem 654:114736

    CAS  PubMed  Google Scholar 

  14. Rudiansyah M, Abdelbasset WK, Jasim SA, Mohammadi G, Dharmarajlu SM, Nasirin C, Turki Jalil A, Opulencia MJC, Kadhem Abid M, ShahbaziNaserabad S (2022) Aquaculture 555:738254

    CAS  Google Scholar 

  15. Wang MR, Deng L, Liu GC, Wen L, Wang JG, Huang KB, Tang HT, Pan YM (2019) Org Lett 21:4929

    CAS  PubMed  Google Scholar 

  16. Wang Y, Li C, Zhang Y, Yang M, Li BK, Dong L, Wang J (2018) Int J Precis Eng Manuf Green Technol 5:327

    CAS  Google Scholar 

  17. Zhang Y, Li HN, Li C, Huang C, Ali HM, Xu X, Mao C, Ding W, Cui X, Yang M, Yu T, Jamil M, Gupta MK, Jia D, Said Z (2022) Friction 10:803

    CAS  Google Scholar 

  18. Cui X, Li C, Ding W, Chen Y, Mao C, Xu X, Liu B, Wang D, Li HN, Zhang Y, Said Z, Debnath S, Jamil M, Ali HM, Sharma S (2022) Chin J Aeronaut 35:85

    Google Scholar 

  19. Wang X, Li C, Zhang Y, Said Z, Debnath S, Sharma S, Yang M, Gao T (2022) Int J Adv Manuf Technol 119:631

    Google Scholar 

  20. Cui X, Li C, Zhang Y, Said Z, Debnath S, Sharma S, Ali HM, Yang M, Gao T, Li R (2022) J Manuf Processes 80:273

    Google Scholar 

  21. Lai WF (2020) J Drug Deliv Sci Technol 59:101916

    CAS  Google Scholar 

  22. Yang Y, Gong Y, Li C, Wen X, Sun J (2021) J Mater Process Technol 291:117023

    CAS  Google Scholar 

  23. Hoseininezhad-Namin MS, Rahimpour E, Ozkan SA, Jouyban A (2022) Anal Methods 14:212

    CAS  PubMed  Google Scholar 

  24. Lai WF, Tang R, Wong WT (2020) Pharmaceutics 12:1

    Google Scholar 

  25. Jia D, Zhang Y, Li C, Yang M, Gao T, Said Z, Sharma S (2022) Tribol Int 169:107461

    CAS  Google Scholar 

  26. Raya I, Chupradit S, Mustafa YF, Oudaha KH, Kadhim MM, Jalil AT, Kadhim AJ, Mahmudiono T, Thangavelu L (2022) J Nanostructures 12:136

    CAS  Google Scholar 

  27. Budi HS, Davidyants A, Rudiansyah M, Ansari MJ, Suksatan W, Sultan MQ, Jalil AT, Kazemnejadi M (2022) Mater Today Commun 32:104108

    CAS  Google Scholar 

  28. Salahdin OD, Sayadi H, Solanki R, Parra RMR, Al-Thamir M, Jalil AT, Izzat SE, Hammid AT, Arenas LAB, Kianfar E (2022) Appl Phys A 128:1

    Google Scholar 

  29. Jasim SA, Hadi JM, Jalil AT, Catalan Opulencia MJ, Hammid AT, Tohidimoghadam M, Moghaddam-manesh M (2022) Front Chem 10:868794

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Sivaraman R, Patra I, Jade COM, Sagban R, Sharma H, Turki Jalil A, Ghaffar EA (2022) J Electroanal Chem 917:116413

    CAS  Google Scholar 

  31. Jasim SA, Hachem K, Abed Hussein S, Turki Jalil A, Hameed NM, DehnoKhalaji A (2022) J Chin Chem Soc 69:1051

    CAS  Google Scholar 

  32. Abbaspour-Gilandeh E, Aghaei-Hashjin M, Jahanshahi P, Hoseininezhad-Namin MS (2017) Monatsh Chem 148:731

    CAS  Google Scholar 

  33. Kanan SM, El-Kadri OM, Abu-Yousef IA, Kanan MC (2009) Sensors 9:8158

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Jasim SA, Hadi JM, Opulencia MJC, Karim YS, Mahdi AB, Kadhim MM, Bokov DO, Jalil AT, Mustafa YF, Falih KT (2022) J Alloys Compd 917:165404

    CAS  Google Scholar 

  35. Zhou J, Zou L, Zhang X, Ji L, Nezhad PDK (2021) J Mol Model 27:1

    CAS  Google Scholar 

  36. Prasad AR, Williams L, Garvasis J, Shamsheera KO, Basheer SM, Kuruvilla M, Joseph A (2021) J Mol Liq 331:115805

    CAS  Google Scholar 

  37. Sahay PP (2005) J Mater Sci 40:4383

    CAS  Google Scholar 

  38. Wang L, Wang S, Xu M, Hu X, Zhang H, Wang Y, Huang W (2013) Phys Chem Chem Phys 15:17179

    CAS  PubMed  Google Scholar 

  39. Derakhshandeh M, Anaraki-Ardakani H (2016) Phys E 84:298

    CAS  Google Scholar 

  40. Esrafili MD, Arjomandi Rad F (2022) Int J Quantum Chem 122:e26873

    CAS  Google Scholar 

  41. Hjiri M, El Mir L, Leonardi SG, Pistone A, Mavilia L, Neri G (2014) Sens Actuators B Chem 196:413

    CAS  Google Scholar 

  42. Hjiri M, Dhahri R, El Mir L, Bonavita A, Donato N, Leonardi SG, Neri G (2015) J Alloys Compd 634:187

    CAS  Google Scholar 

  43. Liu M, Li C, Zhang Y, An Q, Yang M, Gao T, Mao C, Liu B, Cao H, Xu X, Said Z, Debnath S, Jamil M, Ali HM, Sharma S (2021) Front Mech Eng 16:649

    Google Scholar 

  44. Wang X, Li C, Zhang Y, Ali HM, Sharma S, Li R, Yang M, Said Z, Liu X (2022) Tribol Int 174:107766

    CAS  Google Scholar 

  45. Liu B, Khalid I, Patra I, Kuzichkin OR, Sivaraman R, Turki Jalil A, Sagban R, Fadhil SG, Majdi H, Hekmatifar M (2022) J Mol Liq 364:119925

    CAS  Google Scholar 

  46. Ansari MJ, Bokov D, Markov A, Jalil AT, Shalaby MN, Suksatan W, Chupradit S, Al-Ghamdi HS, Shomali N, Zamani A, Mohammadi A, Dadashpour M (2022) Cell Commun Signal 20:1

    Google Scholar 

  47. Ghaffar S, Naqvi MA, Fayyaz A, Abid MK, Khayitov KN, Jalil AT, Alsaikhan F, Hammid AT, Al-Gazally ME, Mohammadparast V, Jannat B, Nouri M (2022) Complement Ther Med 69:102845

    PubMed  Google Scholar 

  48. Honarvari B, Karimifard S, Akhtari N, Mehrarya M, Moghaddam ZS, Ansari MJ, Jalil AT, Matencio A, Trotta F, Yeganeh FE, Farasati Far B, Arki MK, Naimi-Jamal MR, Noorbazargan H, Lalami ZA, Chiani M (2022) Molecules 27:4634

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Xu Y, Al-Mualm M, Terefe EM, Shamsutdinova MI, Opulencia MJC, Alsaikhan F, Turki Jalil A, Hammid AT, Enayati A, Mirzaei H, Khori V, Jabbari A, Salehi A, Soltani A, Mohamed A (2022) Arab J Chem 15:103942

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Jasim SA, Abdelbasset WK, Shichiyakh RA, Al-Shawi SG, Yasin G, Jalil AT, Karim YS, Mustafa YF, Norbakhsh M (2022) Aquac Res 53:3828

    CAS  Google Scholar 

  51. Budi HS, Elveny M, Zhuravlev P, Jalil AT, Al-Janabi S, Alkaim AF, Saleh MM, Shichiyakh RA, Sutarto (2022) Found Comput Decis Sci 47:111

  52. Hussein HK, Aubead M, Kzar HH, Karim YS, Amin AH, Al-Gazally ME, Ahmed TI, Jawad MA, Hammid AT, Jalil AT, Mustafa YF, Saleh MM, Heydari H (2022) Diabetol Metab Syndr 14:1

    Google Scholar 

  53. Ali M, Opulencia MJC, Chandra T, Chandra S, Muda I, Dias R, Chetthamrongchai P, Jalil AT (2022) Sustainability 14:8739

    CAS  Google Scholar 

  54. Pargolghasemi P, Hoseininezhad-Namin MS, Jadid AP (2017) Curr Comput-Aided Drug Des 13:249

    CAS  PubMed  Google Scholar 

  55. Wu S, Yuan N, Xu H, Wang X, Schelly ZA (2006) Nanotechnology 17:4713

    CAS  PubMed  Google Scholar 

  56. Omidvar A (2018) Vacuum 147:126

    CAS  Google Scholar 

  57. Peyghan AA, Rastegar SF, Bagheri Z (2015) Monatsh Chem 146:1233

    CAS  Google Scholar 

  58. Hadipour NL, Ahmadi Peyghan A, Soleymanabadi H (2015) J Phys Chem C 119:6398

    CAS  Google Scholar 

  59. Soltani A, Sousaraei A, Bezi Javan M, Eskandari M, Balakheyli H (2016) New J Chem 40:7018

    CAS  Google Scholar 

  60. Shahabi M, Raissi H (2018) J Biomol Struct Dyn 36:2517

    CAS  PubMed  Google Scholar 

  61. Sajid H, Khan S, Ayub K, Mahmood T (2020) Microporous Mesoporous Mater 299:110126

    CAS  Google Scholar 

  62. Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M (2003) Nano Lett 3:929

    CAS  Google Scholar 

  63. Zhu H, Zhao C, Cai Q, Fu X, Sheykhahmad FR (2020) Inorg Chem Commun 114:107808

    CAS  Google Scholar 

  64. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr (1993) J Comput Chem 14:1347

    CAS  Google Scholar 

  65. Becke AD (1993) J Chem Phys 98:5648

    CAS  Google Scholar 

  66. Kadhim MM, Sead FF, Jalil AT, Taban TZ, Rheima AM, Almashhadani HA, Shadhar MH, Hamel S (2022) Monatsh Chem 153:589

    CAS  Google Scholar 

  67. Grimme S (2004) J Comput Chem 25:1463

    CAS  PubMed  Google Scholar 

  68. Harun AM, Azhar MASA, Bokov DO, Raya I, Derakhshandeh M (2021) Inorg Chem Commun 133:108892

    Google Scholar 

  69. Nattagh F, Hosseini S, Esrafili MD (2021) J Mol Liq 342:117459

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Indrajit Patra or T. Ch. Anil Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhlif, B.A., Patra, I., Kumar, T.C.A. et al. Investigate the effect of Zn12O12, AlZn11O12, and GaZn11O12 nanoclusters in the carbamazepine drug detection in gas and solvent phases: a comparative DFT study. Monatsh Chem 154, 171–179 (2023). https://doi.org/10.1007/s00706-022-03025-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-022-03025-4

Keywords

Navigation