Skip to main content
Log in

Polyvinylpyrrolidone-supported zirconium nanoparticles: synthesis, characterization, efficiency as a new polymer nanocomposite catalyst for one-step transesterification reaction

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Cross-linked polyvinylpyrrolidone-supported zirconium tetrachloride is reported as a new polymeric nanocomposite catalyst for the one-stage transesterification reaction of ethyl acetate with different alcohols. The catalyst was characterized by transmission electron microscopy, scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, dynamic light scattering technique, inductively coupled plasma, and thermal gravimetric analysis. Also, the amount of zirconium nanoparticles was measured by atomic absorption spectroscopy. Using different substrates on the scale of 1.0 mmol, the experiments showed successful transesterification reaction with desirable yields and short reaction times by adding the catalyst (0.20 g, 0.40 mol%) and n-hexane/chloroform (3.0 cm3) as solvent under reflux conditions. The catalyst could be reused for seven consecutive reactions without a considerable loss of activity. The most remarkable features of this method are the non-toxicity of the catalyst, simple operation, and efficient results, which make it environmentally friendly, economical, and safe.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The spectroscopic data of the products are available in the Supplementary Information.

References

  1. Hooshmand S (2018) Introduction of polymer-based nanocomposites. Polymer-based nanocomposites for energy and environmental applications, 1st edn. Woodhead Publishing, Sawston, p 1

    Google Scholar 

  2. Mehmet A, Tasdelen MA (2017) Polymers 9:499

    Google Scholar 

  3. Wanasinghe D, Aslani F, Ma G, Habibi D (2020) Nanomaterials 10:541

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Wu H, Fahy WP, Kim S, Kim H, Zhao N, Pilato L, Kafi A, Bateman S, Koo JH (2020) Prog Mater Sci 111:100638

    CAS  Google Scholar 

  5. Idumah CI (2021) Polym Polym Compos 29:509

    CAS  Google Scholar 

  6. Teodorescu M, Bercea M (2015) Polym Plast Technol Eng 54:923

    CAS  Google Scholar 

  7. Shitole AA, Raut P, Giram P, Rade P, Khandwekar A, Garnaik B, Sharma N (2020) Mater Sci Eng 110:110731

    CAS  Google Scholar 

  8. Jinyu Z, Guowei Z, Bin J, Minnan Z, Yan Z (2014) J Solid State Chem 213:210

    Google Scholar 

  9. Yokoyama S, Nozaki J, Motomiya K, Tsukahara N, Takahashi H (2020) Colloids Surf A 591:124567

    CAS  Google Scholar 

  10. Mawuntu VJ, Yusuf Y (2019) J Asian Ceram Soc 7:161

    Google Scholar 

  11. Louie SM, Gorham JM, Tan J, Hackley VA (2017) Environ Sci Nano 4:1866

    CAS  Google Scholar 

  12. Neupane GR, Hari P (2020) ChemistrySelect 5:11596

    CAS  Google Scholar 

  13. Perdigão P, Morais Faustino BM, Faria J, Canejo JP, Borges JP, Ferreira I (2020) Fibers 8:24

    Google Scholar 

  14. Morozov VN, Mikheev AY (2012) J Membr Sci 403–404:110

    Google Scholar 

  15. Jouyandeh M, Ali JA, Akbari V, Aghazadeh M, Paran SMR, Naderi G, Saeb MR, Ranjbar Z, Ganjali MR (2019) Prog Org Coat 136:105247

    CAS  Google Scholar 

  16. Savva I, Kalogirou AS, Achilleos M, Vasile E, Koutentis PA, Krasia-Christoforou T (2016) Molecules 21:1218

    PubMed Central  PubMed  Google Scholar 

  17. Joshi N, Banerjee S (2015) Tetrahedron Lett 56:4163

    CAS  Google Scholar 

  18. Tamami B, Allahyari H, Ghasemi S, Farjadian F (2011) J Organomet Chem 696:594

    Google Scholar 

  19. Shirini F, Goli-Jolodar O, Akbari M, Seddighi M (2016) Res Chem Intermed 42:4733

    CAS  Google Scholar 

  20. Chegini MG, Mokhtary M (2017) Polycycl Aromat Compd 37:63

    Google Scholar 

  21. Nishida Y, Chaudhari C, Imatome H, Sato K, Nagaoka K (2018) Chem Lett 47:938

    CAS  Google Scholar 

  22. Sakamuri R (2003) Esters organic. Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Hoboken

    Google Scholar 

  23. Bożek-Winkler E, Gmehling J (2006) Ind Eng Chem Res 45:6648

    Google Scholar 

  24. Yang Z, Cui X, Yu X, Zhang Y, Feng T, Liu H, Song K (2015) Catal Lett 145:1281

    CAS  Google Scholar 

  25. Kumar S, Thakur N, Abida K, Kumar A, Gupta RK, Ali A (2021) Mater Today: Proc 36:A1

    CAS  Google Scholar 

  26. Li H, Liu F, Ma X, Cui P, Guo M, Li Y, Gao Y, Zhou S, Yu M (2020) Renew Energy 149:816

    CAS  Google Scholar 

  27. Silva LL, Alkimim IP, Costa JPVS, Meneghetti SMP, Cardoso D (2019) Microporous Mesoporous Mater 284:265

    CAS  Google Scholar 

  28. Chiarotto I (2016) Synth Commun 46:1840

    CAS  Google Scholar 

  29. Nakatake D, Yazaki R, Matsushima Y, Ohshima T (2016) Adv Synth Catal 358:2569

    CAS  Google Scholar 

  30. Gade VB, Rathi AK, Bhalekar SB, Tucek J, Tomanec O, Varma RS, Zboril R, Shelke SN, Gawande MB (2017) ACS Sustain Chem Eng 5:3314

    CAS  Google Scholar 

  31. Faria EA, Marques JS, Dias IM, Andrade RDA, Suarez PAZ, Prado AGS (2009) J Braz Chem Soc 20:1732

    CAS  Google Scholar 

  32. Kaur N, Ali A (2015) Appl Catal A-Gen 489:193

    CAS  Google Scholar 

  33. Pratap SR, Shamshuddin SZM, Thimmaraju N, Mohan Kumar TE (2018) Chem Eng Commun 205:557

    CAS  Google Scholar 

  34. Tang Z, Jiang Q, Peng L, Xu X, Li J, Qiu R, Au CT (2017) Green Chem 19:5396

    CAS  Google Scholar 

  35. Borjas Nevarez R, Balasekaran SM, Kim E, Weck P, Poineau F (2018) Acta Crystallogr C Struct Chem 74:307

    CAS  PubMed  Google Scholar 

  36. Rimaz M, Mousavi H, Keshavarz P, Khalili B (2015) Curr Chem Lett 4:159

    Google Scholar 

  37. Smitha G, Sanjeeva Reddy C (2004) Synth Commun 34:3997

    CAS  Google Scholar 

  38. Aboonajmi J, Mousavi S, Maghsoodlou M, Hazeri N, Masoumnia A (2013) Res Chem Intermed 41:1925

    Google Scholar 

  39. Lashkari M, Heydari R, Mohamadpour FA (2018) Iran J Sci Technol Trans A Sci 42:1191

    Google Scholar 

  40. Srinivasa Reddy K, Venkateshwar Reddy C, Mahesh M, Rosi Reddy K, Raju PVK, Narayana Reddy VV (2011) Can J Chem 85:184

    Google Scholar 

  41. Aghapoor K, Darabi R, Mohsenzadeh F, Balavar Y, Daneshyar H (2009) Transit Met Chem 35:49

    Google Scholar 

  42. Melo ADQ, Silva FFM, Dos Santos JCS, Fernández-Lafuente R, Lemos TLG, Dias Filho FA (2017) Molecules 22:2165

    PubMed Central  PubMed  Google Scholar 

  43. Esmaeilpour M, Sardarian AR (2014) Iran J Sci Technol Trans A Sci 38:175

    Google Scholar 

  44. Hosseini Sarvari M, Sharghi H (2005) Tetrahedron 61:10903

    CAS  Google Scholar 

  45. Farhadi S, Zaidi M (2009) J Mol Catal A Chem 299:18

    CAS  Google Scholar 

  46. Bartoli G, Bosco M, Dalpozzo R, Marcantoni E, Massaccesi M, Sambri L (2003) Eur J Org Chem 2003:4611

    Google Scholar 

  47. Peng Y, Cui X, Zhang Y, Feng T, Tian Z, Xue L (2013) Appl Catal A-Gen 466:131

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the research council of the Azad University of Shiraz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nooredin Goudarzian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5428 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azadi, S., Goudarzian, N., Parish, M.H. et al. Polyvinylpyrrolidone-supported zirconium nanoparticles: synthesis, characterization, efficiency as a new polymer nanocomposite catalyst for one-step transesterification reaction. Monatsh Chem 154, 239–248 (2023). https://doi.org/10.1007/s00706-022-03024-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-022-03024-5

Keywords

Navigation