Skip to main content
Log in

One-pot carbonylation-dehydration tandem reaction of aryl iodides with acylhydrazines for synthesis of 2,5-diaryl-1,3,4-oxadiazoles

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The structures of 2,5-diaryl-1,3,4-oxadiazoles with good stability have attract great attention for development of new and safe therapeutic agents with functions in antimicrobial, anti-inflammatory, antitumor, and antiviral (for treatment of HIV infection), etc. In the present work, over the developed Pd-catalytic system with involvement of the 3-thiophenyl-benzimidazolyl-based mono-phosphine, the one-pot carbonylation-dehydration tandem reaction of aryl iodides with acylhydrazines for synthesis of 2,5-diaryl-1,3,4-oxadiazoles was reported for the first time with advantages of simplified manipulations, high efficiency (yields of 62–93%), as well as high safety of applied organic substrates. The relatively high reaction temperature of 140–160 ℃ was required for this tandem reaction, wherein the good stability of the involved phosphine with suitable stereo-electronic property guaranteed the fulfilment of this sequence. It was demonstrated that the first-step carbonylation of aryl iodides with acylhydrazine toward N,N′-diarylhydrazides was the rate-determine step in the overall process. Subsequently, the formed N,N'-dibenzoylhydrazides irreversible dehydrated into 2,5-diaryl-1,3,4-oxadiazoles with the presence of dehydrating agent like DCC.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data associated with this article is available online in the electronical supplementar material.

References

  1. Patel KD, Prajapati SM, Panchal SN, Patel HD (2014) Synth Commun 44:1859

    CAS  Google Scholar 

  2. Siwach A, Verma PK (2020) BMC Chem 14:70

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Salahuddin, Mazumder A, Yar MS, Mazumder R, Chakraborthy GS, Ahsan MJ, Rahman MU (2017) Synth Commun 47:1805

    CAS  Google Scholar 

  4. Rahul R, Jat RK, Saravanan J (2016) J Innov Pharm Biol Sci 3:114

    CAS  Google Scholar 

  5. Lelyukh M, Matiichuk Y, Flud V, Chaban I, Ogurtsov V (2022) Biointerf Res Appl Chem 12:6710

    CAS  Google Scholar 

  6. Lelyukh M, Demchuk I, Harkov S, Chaban T, Drapak I, Chaban I, Shelepeten L, Matiychuk V (2020) Biointerf Res Appl Chem 10:5960

    CAS  Google Scholar 

  7. Chawla R, Arora A, Parameswaran MK, Chan P, Ravi TK (2010) Acta Pol Pharm 67:247

    CAS  PubMed  Google Scholar 

  8. Manjunatha K, Poojary B, Lobo PL, Fernandes J, Kumari NS (2010) Eur J Med Chem 45:5225

    CAS  PubMed  Google Scholar 

  9. Husain A, Ajmal M (2009) Acta Pharm 59:223

    CAS  PubMed  Google Scholar 

  10. Zarghi A, Tabatabai SA, Faizi M, Ahadian A, Navabi P, Zanganeh V, Shafiee A (2005) Bioorg Med Chem Lett 15:1863

    CAS  PubMed  Google Scholar 

  11. Singh P, Jangra PK (2010) Chem Sin 1:118

    CAS  Google Scholar 

  12. Ouyang X, Piatnitski EL, Pattaropong V, Chen X, He HY, Kiselyov AS, Velankar A, Kawakami J, Labelle M, Smith L (2006) Bioorg Med Chem Lett 16:1191

    CAS  PubMed  Google Scholar 

  13. Roy PP, Bajaj S, Maity TK, Singh J (2017) Indian J Pharm Educ 51:260

    CAS  Google Scholar 

  14. Kim RM, Rouse EA, Chapman KT, Schleif WA, Olsen DB, Stahlhurt M, Rutkowski CA, Emini EA, Tata JR (2004) Bioorg Med Chem Lett 14:4651

    CAS  PubMed  Google Scholar 

  15. Johns B, Weatherhead JG, Allen SH, Thompson JB, Garvey EP, Foster SA, Jeffrey JL, Miller WH (2009) Bioorg Med Chem Lett 19:1807

    CAS  PubMed  Google Scholar 

  16. Somani RR, Agrawal AG, Kalantri PP, Gavarkar PS, Clercq ED (2011) Int J Drug Des Discov 2:353

    CAS  Google Scholar 

  17. Szarka Z, Skoda-Földes R, Horváth J, Tuba Z, Kollár L (2002) Steroids 67:581

    CAS  PubMed  Google Scholar 

  18. Andersen TL, Caneschi W, Ayoub A, Lindhardt AT, Couri MRC, Skrydstrup T (2014) Adv Synth Catal 356:3074

    CAS  Google Scholar 

  19. Bhagat S, Supriya M, Pathak S, Sriram D, Chakraborti AK (2019) Bioorg Chem 82:246

    CAS  PubMed  Google Scholar 

  20. Kumar D, Kommi DN, Chopra P, Ansari MI, Chakraborti AK (2012) Eur J Org Chem 2012:6407

    CAS  Google Scholar 

  21. Bhagat S, Chakraborti AK (2007) J Org Chem 72:1263

    CAS  PubMed  Google Scholar 

  22. Bhagat S, Chakraborti AK (2003) J Org Chem 78:6029

    Google Scholar 

  23. Kumar D, Kommi DN, Bollineni N, Patel AR, Chakraborti AK (2012) Green Chem 14:2038

    CAS  Google Scholar 

  24. Kumar D, Sonawane M, Pujala B, Jain VK, Bhagat S, Chakraborti AK (2013) Green Chem 15:2872

    CAS  Google Scholar 

  25. Roy SR, Jadhavar PS, Seth K, Sharma KK, Chakraborti AK (2011) Synthesis 14:2261

    Google Scholar 

  26. Parikh N, Roy SR, Seth K, Kumar A, Chakraborti AK (2016) Synthesis 48:547

    CAS  Google Scholar 

  27. Mondal D, Balakrishna MS (2021) Dalton Trans 50:6382

    CAS  PubMed  Google Scholar 

  28. van Leeuwen PWNM (2019) Phosphines and related tervalent phosphorus systems: organophosphorus compounds as ligands in organometallic catalysis, organophosphorus Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1–58

    Google Scholar 

  29. Yamaguchi R, Fujita KI, Editors (2014) Ligand platforms in homogeneous catalytic reactions with metals: practice and applications for green organic transformation. Wiley, Hoboken, NJ

    Google Scholar 

  30. Alberico E, Möller S, Horstmann M, Drexler H, Heller D (2019) Catalysts 9:582

    CAS  Google Scholar 

  31. Nicholls LDM, Alcarazo M (2019) Chem Lett 48:1

    CAS  Google Scholar 

  32. Mondal D, Balakrishna MS (2020) Eur J Inorg Chem 2020:2392

    CAS  Google Scholar 

  33. Yang SQ, Yao YQ, Chen XC, Lu Y, Zhao XL, Liu Y (2021) Organometallics 40:1032

    CAS  Google Scholar 

  34. Yang D, Liu H, Liu L, Guo WD, Lu Y, Liu Y (2019) Green Chem 21:5336

    CAS  Google Scholar 

  35. Liu H, Liu L, Guo WD, Lu Y, Zhao XL, Liu Y (2019) J Catal 373:215

    CAS  Google Scholar 

  36. Yang D, Liu L, Wang DL, Lu Y, Zhao XL, Liu Y (2019) J Catal 371:236

    CAS  Google Scholar 

  37. Yang D, Liu H, Wang DL, Luo ZJ, Lu Y, Xia F, Liu Y (2018) Green Chem 20:2588

    CAS  Google Scholar 

  38. Abdellah I, Lepetit C, Canac Y, Duhayon C, Chauvin R (2010) Chem Eur J 16:13095

    CAS  PubMed  Google Scholar 

  39. Canac Y, Maaliki C, Abdellah I, Chauvin R (2012) New J Chem 36:17

    CAS  Google Scholar 

  40. Brennführer A, Neumann H, Beller M (2009) Angew Chem Int Ed 48:4114

    Google Scholar 

  41. Xiong SX, Wang R, Zhang XK, Wu Y, Xu ZY, Ma B, Zhang XL, Qu QC, Wu BH, Chu J, Wang XQ, Zhang RL, Gong M, Chen ZM (2019) ChemistrySelect 4:543

    CAS  Google Scholar 

  42. Wang DL, Liu H, Yang D, Wang P, Lu Y, Liu Y (2017) ChemCatChem 9:4206

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22172052 and 21972045), and the Research Funds of Happiness Flower ECNU (2022ST2203).

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8706 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Yang, SQ., Zhao, KC. et al. One-pot carbonylation-dehydration tandem reaction of aryl iodides with acylhydrazines for synthesis of 2,5-diaryl-1,3,4-oxadiazoles. Monatsh Chem 154, 215–222 (2023). https://doi.org/10.1007/s00706-022-03021-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-022-03021-8

Keywords

Navigation