Skip to main content
Log in

Nanographene laser-pyrolyzed paper electrodes for the impedimetric detection of d-glucose via a molecularly imprinted polymer

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In this proof-of-concept study, we used laser-pyrolyzed paper as the supporting electrodes for the swift, impedimetric, and enzymeless detection of d-glucose by the means of molecularly imprinted polymer. Molecular imprinting of monomer 3-amino-4-hydroxybenzoic acid was performed by electrochemical polymerization in the presence of d-glucose as a template molecule, followed by the template removal process via cyclic voltammetry in PBS (pH = 7.4). The analytical capacitance signal was extracted from the raw electrochemical impedance spectra recorded after only 60 s of incubation with the analyte. The electrodes were characterized by Raman spectroscopy and scanning electron microscopy to disclose their structural and morphological properties, revealing the presence of nanographene of high porosity. The analytical performance was investigated in the clinically relevant range of 0–30 mmol dm−3, which demonstrated good linearity (r2 = 0.97), decent limit of detection (1.77 mmol dm−3), an excellent selectivity (ɑ = 1.38–3.73), and good reproducibility (5.0%).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ataide V, Mendes L, Gama L, de Araujo W, Paixão T (2020) Anal Methods 12:1030

    Article  Google Scholar 

  2. Noviana E, McCord C, Clark K, Jang I, Henry C (2020) Lab Chip 20:9

    Article  CAS  PubMed  Google Scholar 

  3. Ferreira P, Ataíde V, Silva Chagas C, Angnes L, Tomazelli Coltro W, Longo CPT, de Reis AW (2019) TrAC 119:115622

    CAS  Google Scholar 

  4. Ozer T, McMahon C, Henry C (2020) Annu Rev Anal Chem 13:85

    Article  Google Scholar 

  5. Stefano J, Orzari L, Silva-Neto H, de Ataíde V, Mendes L, Coltro W, Longo CPT, Janegitz B (2022) Curr Opin Electrochem 32:100893

    Article  CAS  Google Scholar 

  6. Nery E, Kubota L (2013) Anal Bioanal Chem 405:7573

    Article  CAS  PubMed  Google Scholar 

  7. Mazurkiewicz W, Podrażka M, Jarosińska E, Kappalakandy Valapil K, Wiloch M, Jönsson-Niedziółka M, Witkowska Nery E (2020) ChemElectroChem 7:2939

    Article  CAS  Google Scholar 

  8. Akyazi T, Basabe-Desmonts L, Benito-Lopez F (2018) Anal Chim Acta 1001:1

    Article  CAS  PubMed  Google Scholar 

  9. Yang Y, Noviana E, Nguyen M, Geiss B, Dandy D, Henry C (2016) Anal Chem 89:71

    Article  PubMed  Google Scholar 

  10. de Araujo W, Frasson C, Ameku W, Silva J, Angnes L, Paixão T (2017) Angew Chem Int Ed 56:15113

    Article  Google Scholar 

  11. Bezerra Martins A, Lobato A, Tasić N, Perez-Sanz F, Vidinha P, Paixão T, Moreira Gonçalves L (2019) Electrochem Commun 107:106541

    Article  CAS  Google Scholar 

  12. Tasić N, de Sousa OL, Paixão T, Moreira GL (2020) Med Devices Sens 3:10115

    Article  Google Scholar 

  13. Charpentier S, Cournot M, Lauque D, Girardi C, Bounes V, Elbaz M, Ducasse J (2011) Emerg Med J 28:564

    Article  PubMed  Google Scholar 

  14. Roglic G (2016) Int J Non-Commun Dis 1:3

    Article  Google Scholar 

  15. Olokoba A, Obateru O, Olokoba L (2012) Oman Med J 27:269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. American Diabetes Association (2014) Diabetes Care 37:S81

    Article  Google Scholar 

  17. Zhang JXJ, Hoshino K (2013) Molecular sensors and nanodevices: principles, designs and applications in biomedical engineering. Elsevier, Amsterdam

    Google Scholar 

  18. Zaidi S, Shin J (2016) Talanta 149:30

    Article  CAS  PubMed  Google Scholar 

  19. Chen C, Xie Q, Yang D, Xiao H, Fu Y, Tan Y, Yao S (2013) RSC Adv 3:4473

    Article  CAS  Google Scholar 

  20. Crapnell R, Hudson A, Foster C, Eersels K, Grinsven B, Cleij T, Banks C, Peeters M (2019) Sensors 19:1204

    Article  CAS  PubMed Central  Google Scholar 

  21. Yang Y, Yi C, Luo J, Liu R, Liu J, Jiang J, Liu X (2011) Biosens Bioelectron 26:2607

    Article  CAS  PubMed  Google Scholar 

  22. Cheng Z, Wang E, Yang X (2001) Biosens Bioelectron 16:179

    Article  CAS  PubMed  Google Scholar 

  23. Garcia-Cruz A, Ahmad O, Alanaz K, Piletska E, Piletsky S (2020) Microsyst Nanoeng 6:83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Heller A, Feldman B (2008) Chem Rev 108:2482

    Article  CAS  PubMed  Google Scholar 

  25. Malard L, Pimenta M, Dresselhaus G, Dresselhaus M (2009) Phys Rep 473:51

    Article  CAS  Google Scholar 

  26. Pimenta M, Dresselhaus G, Dresselhaus M, Cançado L, Jorio A, Saito R (2007) Phys Chem Chem Phys 9:1276

    Article  CAS  PubMed  Google Scholar 

  27. Wu JB, Lin ML, Cong X, Liu HN, Tan PH (2018) Chem Soc Rev 47:1822

    Article  CAS  PubMed  Google Scholar 

  28. Johra FT, Lee JW, Jung WG (2014) J Ind Eng Chem 20:2883

    Article  CAS  Google Scholar 

  29. Tasić N, Bezerra Martins A, Yifei X, Sousa Góes M, Martín-Yerga D, Mao L, Paixão T, Moreira Gonçalves L (2020) Electrochem Commun 121:106872

    Article  Google Scholar 

  30. Toghill KE, Compton RG (2010) Int J Electrochem Sci 5:1246

    CAS  Google Scholar 

  31. Amor-Gutiérrez O, Costa-Rama E, Fernández-Abedul M (2021) Microchim Acta 188:302

    Article  Google Scholar 

  32. Bihar E, Wustoni S, Pappa A, Salama K, Baran D, Inal S (2018) Flex Electron 2:30

    Article  Google Scholar 

  33. Wang B, Wu Y, Chen Y, Weng B, Li C (2017) Sens Actuators B Chem 238:802

    Article  CAS  Google Scholar 

  34. Chen Z, Wright C, Dincel O, Chi T, Kameoka J (2020) Sensors 20:1098

    Article  CAS  PubMed Central  Google Scholar 

  35. Chaiyo S, Mehmeti E, Siangproh W, Hoang T, Nguyen H, Chailapakul O, Kalcher K (2018) Biosens Bioelectron 102:113

    Article  CAS  PubMed  Google Scholar 

  36. Qi Y, Hu Y, Wu X, Wu W, Bao J, Yang H, Zhao J, Hou C, Huo D (2021) J Electrochem Soc 168:107507

    Article  CAS  Google Scholar 

  37. Zhou J, Yin H, Wang L, Zhao H, Gong J, Wu S, Nie Q (2021) J Electron Mater 50:6392

    Article  CAS  Google Scholar 

  38. Li Y, Deng D, Wang H, Huan K, Yan X, Luo L (2022) Anal Chim Acta 1190:339249

    Article  CAS  PubMed  Google Scholar 

  39. Scandurra A, Censabella M, Boscarino S, Grimaldi M, Ruffino F, Condorelli G, Malandrino G (2021) Phys Status Solidi A 218:2100389

    Article  CAS  Google Scholar 

  40. Zhou J, Yin H, Wang L, Zhao H, Zhang Z, Gong J, Zheng Y, Nie Q (2021) J Mater Sci: Mater Electron 32:22493

    CAS  Google Scholar 

  41. Borade P, Ali M, Jahan S, Sant T, Bogle K, Panat R, Jejurikar S (2021) ACS Appl Nano Mater 4:6609

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by São Paulo Research Foundation (FAPESP) [Grant numbers: 2017/10522-5, 2018/14425-7, 2018/08782-1, 2018/13922-7, 2019/11214-8], Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES: 001) [Pró-Forenses Edital 25/2014] and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [Grant Number: 305605/2017-8, and 302839/2020-8, 145833/2020-8].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola Tasić.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bossard, B., Grothe, R.A., Martins, A.B. et al. Nanographene laser-pyrolyzed paper electrodes for the impedimetric detection of d-glucose via a molecularly imprinted polymer. Monatsh Chem 153, 1129–1135 (2022). https://doi.org/10.1007/s00706-022-02997-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-022-02997-7

Keywords

Navigation