Skip to main content
Log in

A novel approach to the synthesis of substituted ribose and furan derivatives: biological activity of dimethyl 3,4-dihydroxytetrahydrofuran-2,5-dicarboxylate

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In this article, the synthesis of ribose and furan derivatives, which have a high probability of showing biological activity, was performed and their biological activities were discussed. For this purpose, dimethyl 7-oxa-bicyclo[2.2.1]hepta-2,5-diene-2,3-dicarboxylate was prepared by the addition reaction of furan to dimethyl acetylene dicarboxylate. Fragmentation reaction of dimethyl 7-oxa-bicyclo[2.2.1]hepta-2,5-diene-2,3-dicarboxylate was examined by two different methods; KMnO4/CuSO4·5H2O and OsO4/NaIO4/2,6-lutidine. Ester groups of dimethyl 2-formylfuran-3,4-dicarboxylate were reduced by LiAlH4 and NaBH4. Dimethyl 7-oxa-bicyclo[2.2.1]hepta-2,5-diene-2,3-dicarboxylate was reacted with MCPBA (meta-chloroperbenzoic acid) and dimethyl 3,8-dioxatricyclo[3.2.1.02,4]oct-6-ene-6,7-dicarboxylate was synthesized in high yield. Fragmentation reaction of dimethyl 3,8-dioxatricyclo[3.2.1.02,4]oct-6-ene-6,7-dicarboxylate gave dimethyl 3,4-dihydroxytetrahydrofuran-2,5-dicarboxylate. The structures of the synthesized molecules were determined from 1H NMR, 13C NMR, MS, and IR data. Thus, different ribose and furan derivatives likely to exhibit biological activity were obtained in the study. Since dimethyl 3,4-dihydroxytetrahydrofuran-2,5-dicarboxylate is the most effective among synthesized molecules, the biological activity of dimethyl 3,4-dihydroxytetrahydrofuran-2,5-dicarboxylate is discussed in this article. The newly prepared dimethyl 3,4-dihydroxytetrahydrofuran-2,5-dicarboxylate demonstrated 67.62% DPPH radical inhibition ability at 200 mg/dm3 and it exhibited good antimicrobial activity against several pathogene microorganisms. It degraded the whole of DNA molecule. In addition to these, dimethyl 3,4-dihydroxytetrahydrofuran-2,5-dicarboxylate inhibited the biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa as 98.36 and 100% at 250 mg/dm3, respectively. It displayed 100% microbial cell viability inhibition against Escherichia coli at 250 mg/dm3.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Joyce GF (1989) Nature 338:217

    Article  CAS  PubMed  Google Scholar 

  2. Benner SA, Ellington AD, Tauer A (1989) Proc Natl Acad Sci USA 86:7054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shapiro R (1988) Orig Life Evol Biosph 18:71

    Article  CAS  PubMed  Google Scholar 

  4. Larralde R, Robertson MP, Miller SL (1995) Proc Natl Acad Sci USA 92:8158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Benner SA, Kim HJ, Kim MJ, Ricardo A (2010) Cold Spring Harb Perspect Biol 2:a003467

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jordheim LP, Durantel D, Zoulim F, Dumontet C (2013) Nature Rev Drug Discov 12:447

    Article  CAS  Google Scholar 

  7. Chen M, Wu H, Zhang W, Mu W (2020) Appl Microbiol Biotechnol 104:3321

    Article  CAS  PubMed  Google Scholar 

  8. Viola G, Vedaldi D, Dall’Acqua, Basso FG, Disar S, Spinelli M, Cosi-melli B, Boccalini M, Chimichi S (2004) Chem Biodivers 1:1265

  9. Lukevits É, Demicheva L (1993) Chem Heterocycl Compd 29:243

    Article  Google Scholar 

  10. Loğoğlu E, Yilmaz M, Katircioğlu H, Yakut M, Mercan S (2010) Med Chem Res 19:490

    Article  Google Scholar 

  11. Saleh-Ghadimi S, Alizadeh M, Esfanjani AT, Hezaveh SJG (2014) Int J Food Sci 26:169

    Google Scholar 

  12. Rahimzadeh N, Alizadeh M, Ghaemmaghami Hezaveh SJ (2014) J Chem Health Risks 4:15

    CAS  Google Scholar 

  13. Simsek N, Arici C, McKee ML Ülkü D, Balci M (2001) Struct Chem 12:305

  14. Yılmaz Ö, Simsek Kus N, Tunç T, Şahin E (2015) J Mol Struct 1098:72

    Article  Google Scholar 

  15. Yılmaz Ö, Şimşek Kuş N, Küce P, Coral G, Çelik A, Gültekin MS (2015) Med Chem Res 24:2709

    Article  Google Scholar 

  16. Zhu Y, Yan H, Lu L, Liu D, Rong G, Mao J (2013) J Org Chem 78:9898

    Article  CAS  PubMed  Google Scholar 

  17. Khusnutdinov RI, Bayguzina AR, Mukminov RR (2013) Russ Chem Bull 62:93

    Article  CAS  Google Scholar 

  18. Takao Y, Hakuji K, Takeo K (1971) Bull Chem Soc Jpn 44:1701

    Article  Google Scholar 

  19. Hultin PG, Mueseler FJ, Jones JB (1991) J Org Chem 56:5375

    Article  CAS  Google Scholar 

  20. Kokilam G, Vasuki S (2014) Int JPharm Pharm Sci Res 4:7

    Google Scholar 

  21. Gurunanjappa P, Ningappa MB, Kariyappa AK (2016) Chem Data Coll 5:1

    Google Scholar 

  22. Raja DS, Bhuvanesh NS, Natarajan K (2012) Dalton Trans 41:4365

    Article  CAS  PubMed  Google Scholar 

  23. Ajiboye TO (2019) Microb Pathog 128:342

    Article  CAS  PubMed  Google Scholar 

  24. Jeffrey AM, Brunnemann KD, Duan JD, Schlatter J, Williams GM (2012) Food Chem Toxicol 50:675

    Article  CAS  PubMed  Google Scholar 

  25. Vardanyan R, Hruby V (2016) Synthesis of best-seller drugs, 1st edn. Academic Press (chapter 30)

    Google Scholar 

  26. Shaala LA, Youssef DTA, Badr JM, Harakeh SM, Genta-Jouve G (2019) Mar Drugs 17:584

    Article  CAS  PubMed Central  Google Scholar 

  27. Manav M, Mohit S, Abdul S, Aakash D (2012) J Serb Chem Soc 77:9

    Article  Google Scholar 

  28. Garg S, Shakya N, Srivastav NC, Agrawal B, Kunimoto DY, Kuma R (2016) Bioorg Med Chem 24:5521

    Article  CAS  PubMed  Google Scholar 

  29. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ (2015) Nat Rev Microbiol 13:269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Cold Spring Harb Perspect Med 3:a010306

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yılmaz Ö (2015) Synthesis of newly tricyclic molecules and ribose derivatives via 1,4-cyclohexadiene and oxanorbornadiene derivatives. PhD thesis number 427778. Institute of Science, Mersin University

  32. Ağırtaş MS, Cabir B, Özdemir S (2013) Dyes Pigm 96:152

    Article  Google Scholar 

  33. Gonca S, Arslan H, Isik Z, Özdemir S, Dizge N (2021) Surf Interfaces 26:11

    Google Scholar 

Download references

Acknowledgements

The authors are indebted to Mersin University [BAP-FBE KB (ÖY) 2014-1 DR and 2017-1-TP2-2175] for their financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nermin Simsek Kus.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 740 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, Ö., Özdemir, S., Gonca, S. et al. A novel approach to the synthesis of substituted ribose and furan derivatives: biological activity of dimethyl 3,4-dihydroxytetrahydrofuran-2,5-dicarboxylate. Monatsh Chem 153, 1225–1234 (2022). https://doi.org/10.1007/s00706-022-02989-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-022-02989-7

Keywords

Navigation