Skip to main content

Advertisement

Log in

Molecular insight into the antiglycating and antiaggregating potential of ferulic acid with BSA

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Ferulic acid (FA) is one of the cinnamic acid derivatives and abundantly available in most cereals, fruits (orange), and vegetables (tomato, carrot). It has been characterized for its therapeutic potential against several diseases and disorders such as diabetes and Alzheimer’s. It exhibits promising antioxidant, anti-inflammatory, anticancer, and antiallergic, and many more properties. In the present study, the FA has been investigated for therapeutic insights through interaction behavior with protein and calculating binding and thermodynamic parameters at marked temperatures. Circular dichroism was employed for analyzing the secondary structure of the protein. The non-enzymatic glycation process was checked with parameters such as fructosamine and carbonyl content, total advanced glycated end products (AGEs), and individual AGE content spectroscopically. The glycation-induced aggregates of amyloid β-structure were measured with thioflavin-T and visualized using SDS-PAGE. The results indicate that the FA-provided physiological binding constant, Kb equals 1.364 × 104 M−1 at 25 ° C with bovine serum albumin (BSA). The dynamic interaction was observed to be spontaneous with negative Gibb’s energy. The FA potentially suppressed the glycated product formation and protein aggregation. Therefore, these findings suggest that FA may be a useful therapeutic drug candidate for the antiglycation and antiaggregation processes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kumar D, Desa A, Chougle S, Bhatkalkar SG, Sachar S, Selvaa KC, Ali A (2021). J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2021.1912642

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jiao Q, Wang R, Jiang Y, Liu B (2018) Chem Cent J 12:1

    Article  Google Scholar 

  3. Yasseen ZJ, Hammad JH, ALTalla HA (2014) Spectrochim Acta A. Mol Biomol Spectrosc 124:677

    Article  CAS  Google Scholar 

  4. Liu J, He Y, Liu D, He Y, Tang Z, Lou H, Hou Y, Cou X (2018) RSC Adv 8:7280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jahanban-Esfahlan A, Panahi-Azar V, Sajedi S (2015) Biopolymers 103:638

    Article  CAS  PubMed  Google Scholar 

  6. Nusrat S, Siddiqi MK, Zaman M, Zaidi N, Ajmal MR, Alam P, Qadeer A, Abdelhameed AS, Khan RH (2016) PLoS ONE 11:e0158833

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sułkowska A (2002) J Mol Str 614:227

    Article  Google Scholar 

  8. Joshi R, Jadhao M, Kumar H, Ghosh SK (2017) Bioorg Chem 75:332

    Article  CAS  PubMed  Google Scholar 

  9. Ojha H, Mishra K, Hassan MI, Chaudhury NK (2012) Thermochim Acta 548:56

    Article  CAS  Google Scholar 

  10. Kumar N, Pruthi V (2014) Biotechnol Rep 4:86

    Article  CAS  Google Scholar 

  11. Cota-Arriola O, Plascencia-Jatomea M, Lizardi-Mendoza J, Robles-Sánchez R, Ezquerra-Brauer J, Ruíz-García J, Vega-Acosta JR, Cortez-Rocha MO (2017) CyTA - J Food 15:65

    CAS  Google Scholar 

  12. Moldovan M, Lahmar A, Bogdan C, Părăuan S, Tomuţă I, Crişan M (2017) Clujul Med 90:212

    PubMed  PubMed Central  Google Scholar 

  13. Tee-Ngam P, Nunant N, Rattanarat P, Siangproh W, Chailapakul O (2013) Sensors 13:13039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ou S, Kwok KC (2004) J Sci Food Agric 84:1261

    Article  CAS  Google Scholar 

  15. Zduńska K, Dana A, Kolodziejczak A, Rotsztejn H (2018) Skin Pharmacol Physiol 31:332

    Article  PubMed  Google Scholar 

  16. Miranda HV, El-Agnaf OM, Outeiro TF (2016) Mov Disord 31:782

    Article  Google Scholar 

  17. Hao C, Xu G, Wang T, Lv Z, Zhu K, Li B (2017) Russ J Phys Chem B 11:140

    Article  CAS  Google Scholar 

  18. Kou SB, Lin ZY, Wang BL, Shi JH, Liu YX (2021) J Mol Struct 1224:129024

    Article  CAS  Google Scholar 

  19. Jalali F, Dorraji PS, Mahdiuni H (2014) J Lumin 148:347

    Article  CAS  Google Scholar 

  20. Li S, Huang K, Zhong M, Guo J, Wang W-Z, Zhu R (2010) Spectrochim Acta A: Mol Biomol Spectrosc 77:680

    Article  Google Scholar 

  21. Ghazanfari-Sarabi S, Habibi-Rezaei M, Eshraghi-Naeeni R, Moosavi-Movahedi AA (2019) PLoS ONE 14:e0214725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alam MF, Varshney S, Khan MA, Laskar AA, Younus H (2018) Int J Biol Macromol 113:300

    Article  CAS  PubMed  Google Scholar 

  23. Satish L, Millan S, Das S, Jena S, Sahoo H (2017) J Solution Chem 46:831

    Article  CAS  Google Scholar 

  24. Awasthi S, Saraswathi N (2015) RSC Adv 5:87660

    Article  CAS  Google Scholar 

  25. Sompong W, Cheng H, Adisakwattana S (2015) PLoS ONE 10:e0129495

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chang HK, Hsu FL, Liu IM, Cheng JT (2003) J Pharm Pharmacol 55:833

    Article  CAS  PubMed  Google Scholar 

  27. Silván JM, Assar SH, Srey C, Del Castillo MD, Ames JM (2011) Food Chem 128:208

    Article  PubMed  Google Scholar 

  28. Sompong W, Meeprom A, Cheng H, Adisakwattana S (2013) Molecules 18:13886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Adisakwattana S (2017) Nutrients 9:163

    Article  PubMed Central  Google Scholar 

  30. Meng G, Meng X, Ma X, Zhang G, Hu X, Jin A, Zhao Y, Liu X (2018) Front Neuroinform 12:31

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kumar D, Bhatkalkar SG, Sachar S, Ali A (2020) J Biomol Struct Dyn 39:6918

    Article  PubMed  Google Scholar 

  32. Gutierrez RMP (2012) Evid Based Complement Alternat Med 2012:598638

    Google Scholar 

  33. Kelly SM, Price NC (2000) Curr Protein Pept Sci 1:349

    Article  CAS  PubMed  Google Scholar 

  34. Shamsi A, Ahmed A, Khan MS, Husain FM, Bano B (2020) Int J Biol Macromol 161:187

    Article  CAS  PubMed  Google Scholar 

  35. Rondeau P, Armenta S, Caillens H, Chesne S, Bourdon E (2007) Arch Biochem Biophys 460:141

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was funded by the Research Society for the Study of Diabetes in India (RSSDI/HQ/Grants/2017/342).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, J., Kumar, D. & Ali, A. Molecular insight into the antiglycating and antiaggregating potential of ferulic acid with BSA. Monatsh Chem 153, 1277–1285 (2022). https://doi.org/10.1007/s00706-022-02983-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-022-02983-z

Keywords

Navigation