Skip to main content

Advertisement

Log in

Theoretical DFT study on the interaction of the fluoride anion with dodecabenzylbambus[6]uril

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

By using quantum mechanical calculations, the most probable structure of the anionic complex species dodecabenzylbambus[6]uril–F was derived. In this “asymmetrical” complex, the fluoride anion F, included in the macrocyclic cavity, is bound by six weak C–H⋯F hydrogen bonds between methine hydrogen atoms on the convex face of glycoluril units and the F ion. The interaction energy, E(int), of the resulting anionic complex was found to be − 427.8 kJ mol−1, confirming also the formation of this complex species.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pedersen CJ (1967) J Am Chem Soc 89:2495

    Article  CAS  Google Scholar 

  2. Pedersen CJ (1967) J Am Chem Soc 89:7017

    Article  CAS  Google Scholar 

  3. Lehn JM (1988) Angew Chem Int Ed 27:89

    Article  Google Scholar 

  4. Cram DJ (1988) Angew Chem Int Ed 27:1009

    Article  Google Scholar 

  5. Sessler JL, Gale P, Cho W-S (2007) Anion receptor chemistry. Royal Society of Chemistry, London

  6. Gale PA, Busschaert N, Haynes CJE, Karagiannidis LE, Kirby IL (2014) Chem Soc Rev 43:205

    Article  CAS  PubMed  Google Scholar 

  7. Busschaert N, Caltagirone C, Van Rossom W, Gale PA (2015) Chem Rev 115:8038

    Article  CAS  PubMed  Google Scholar 

  8. Evans NH, Beer PD (2014) Angew Chem Int Ed 53:11716

    Article  CAS  Google Scholar 

  9. Cova TFGG, Nunes SCC, Valente AJM, Pinho e Melo TMVD, Pais AACC (2017) J Mol Liq 242:640

    Article  CAS  Google Scholar 

  10. Svec J, Necas M, Sindelar V (2010) Angew Chem Int Ed 49:2378

    Article  CAS  Google Scholar 

  11. Havel V, Svec J, Wimmerova M, Dusek M, Pojarova M, Sindelar V (2011) Org Lett 13:4000

    Article  CAS  PubMed  Google Scholar 

  12. Havel V, Sindelar V (2015) ChemPlusChem 80:1601

    Article  CAS  PubMed  Google Scholar 

  13. Havel V, Sindelar V (2015) Chem List 106:730

    Google Scholar 

  14. Toman P, Makrlík E, Vaňura P (2011) Monatsh Chem 142:881

    Article  CAS  Google Scholar 

  15. Böhm S, Makrlík E, Vaňura P (2016) Monatsh Chem 147:697

    Article  Google Scholar 

  16. Toman P, Makrlík E, Vaňura P (2011) Comput Theor Chem 989:97

    Article  Google Scholar 

  17. Gobre VV, Dixit PH, Khedkar JK, Gejji SP (2011) Comput Theor Chem 976:76

    Article  CAS  Google Scholar 

  18. Denis PA, Gancheff JS (2013) Comput Theor Chem 1023:5

    Article  CAS  Google Scholar 

  19. Böhm S, Makrlík E, Vaňura P (2020) Monatsh Chem 151:369

    Article  Google Scholar 

  20. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  21. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C01. Gaussian Inc, Wallingford, CT

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant Agency of Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, project No.: 42900/1312/3114 entitled “Environmental Aspects of Sustainable Development of Society,” and by the Czech Ministry of Education, Youth, and Sports (project MSMT No.: 20/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Vaňura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Böhm, S., Vaňura, P. & Makrlík, E. Theoretical DFT study on the interaction of the fluoride anion with dodecabenzylbambus[6]uril. Monatsh Chem 153, 1155–1160 (2022). https://doi.org/10.1007/s00706-022-02981-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-022-02981-1

Keywords

Navigation