Skip to main content
Log in

Theoretical study on the interaction between 3,4-dinitropyrazole and cyclotetramethylene tetranitramine

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The intermolecular interaction between 3 and 4-dinitropyrazole (DNP) and cyclotetramethylene tetranitramine (HMX) was investigated at the level of M062X(D3)/6–311 +  + G(d, p) in accordance with density functional theory. Six stable structures of DNP/HMX complex were obtained after optimization. Subsequently, electrostatic potential, electron density topology, reduced density gradient, and natural bond orbital were used to investigate the intermolecular interaction. Moreover, the effect of intermolecular interaction on the sensitivity of HMX was studied from different perspectives (e.g., the electron density at the critical point, the length of initiation bond, the bond order, the change of partial nitro charge, as well as the electron density difference). The results indicated that the interaction energy of the six complexes followed an order as follows: structure IV > structure I > structure III > structure VI > structure V > structure II. There were intermolecular hydrogen bonds of C–H·· O and N–H··O and weak van der Waals forces of O··O and N··O in DNP/HMX complexes. The above intermolecular interactions in the complex increased the electron density and strength of the initiation bond in HMX molecule, thus resulting in the decrease of its sensitivity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lei W, Luo YM, Li BB, Wang HX, Yang F, Wang H (2021) Explos Mater 50:13

    Google Scholar 

  2. Guo JL, Cao DL, Wang JL, Wang YH, Qiao R, Li YX (2014) Chin J Energ Mater 22:872

    CAS  Google Scholar 

  3. Li XL, Wang DH, Liu QJ, Hua C, Cao W, Song QG, Wang X, Gao DY (2021) Chin J Energ Mater 29:948

    CAS  Google Scholar 

  4. Ding X, Gou RJ, Ren FD, Liu F, Zhang SH, Gao HF (2016) Int J Quantum Chem 116:88

    Article  CAS  Google Scholar 

  5. Yang X, Zhao HQ, Qu ZB, He MQ, Tang ZY, Lai SW, Wang ZH (2021) J Environ Chem Eng 9:105987

    Article  CAS  Google Scholar 

  6. Du S, Wang Y, Chen LZ, Shi WJ, Ren FD, Li YX, Wang JL, Cao DL (2012) J Mol Model 18:2105

    Article  CAS  PubMed  Google Scholar 

  7. Zhu SF, Zhang SH, Gou RJ, Han G (2018) Chin J Energ Mater 26:201

    CAS  Google Scholar 

  8. Lin H, Zhu SG, Li HZ, Peng XH (2013) J Mol Struct 1048:339

    Article  CAS  Google Scholar 

  9. Qin H, Zeng W, Liu FS, Gan YD, Tang B, Zhu SH, Liu QJ (2021) J Energ Mater 39:125

    Article  CAS  Google Scholar 

  10. Rozas I (2007) Phys Chem Chem Phys 9:2782

    Article  CAS  PubMed  Google Scholar 

  11. Bondi A (1964) J Phys Chem C 68:441

    Article  CAS  Google Scholar 

  12. Leenders MA, Baker MB, Pijpers AB, Lafleur PM, Albertazzi L, Palmans RA, Meijer EW (2016) Soft Matter 12:2887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thomas S (2002) Angew Chem Int Ed 41:48

    Article  CAS  Google Scholar 

  14. Li YQ, Li B, Zhang D, Xie LF (2020) Chem Phys Lett 757:137875

    Article  CAS  Google Scholar 

  15. Lu T, Chen FW (2014) J Phys Chem A 117:3100

    Article  Google Scholar 

  16. Zhang CY, Shu YJ, Huang YG, Zhao XD, Dong HS (2005) J Phys Chem B 109:8978

    Article  CAS  PubMed  Google Scholar 

  17. Lu T, Chen QX (2020) J Mol Model 26:315

    Article  CAS  PubMed  Google Scholar 

  18. Lipkowski P, Grabowski SJ, Robinson TL (2009) J Phys Chem A 108:10865

    Article  Google Scholar 

  19. Bader RFW (1991) Chem Rev 91:893

    Article  CAS  Google Scholar 

  20. Edinson M, Balazs P (2020) J Phys Chem A 124:4223

    Article  Google Scholar 

  21. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  22. Zeman S, Friedl Z (2012) Propell Explos Pyrot 37:609

    Article  CAS  Google Scholar 

  23. Espinosa E, Molins E, Lecomte C (1998) Chem Phys Lett 285:170

    Article  CAS  Google Scholar 

  24. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang W (2010) J Am Chem Soc 132(18):6498–6506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735

    Article  CAS  Google Scholar 

  26. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  27. Goerigk L, Hansen A, Bauer C, Ehrlich S, Najibi A, Grimme S (2017) Phys Chem Chem Phys 19:32184

    Article  CAS  PubMed  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Rev D. Gaussian Inc, Wallingford, CT

    Google Scholar 

  29. Lu T, Chen FW (2012) J Comput Chem 33:580

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The manuscript was written through contributions of all authors. Y M Luo and B B Li guided the theoretical calculation of this study, F Yang and R H Ju assisted in the data processing, H X Wang guided the writing of this paper, R H Ju and H X Wang helped revise the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Lei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, W., Luo, Y., Li, B. et al. Theoretical study on the interaction between 3,4-dinitropyrazole and cyclotetramethylene tetranitramine. Monatsh Chem 153, 1161–1169 (2022). https://doi.org/10.1007/s00706-022-02979-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-022-02979-9

Keywords

Navigation