Skip to main content
Log in

UV-photochemical vapor generation of tellurium in a thin-film photoreactor with fast stripping of volatile compounds

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

UV-photochemical vapor generation (UV-PVG) of tetravalent tellurium was investigated in a continuous flow mode using a special experimental setup of the photoreactor where the flow of a carrier gas was admitted upstream of the photoreactor. This was reflected in formation of a thin film of the reaction medium, leading to more effective penetration of UV radiation into the liquid medium as well as release of generated volatile compounds of Te. The aim of the study was to investigate the effect of this unconventional PVG arrangement on the optimal conditions and performance of the method. Only 4 mol dm−3 acetic acid as the reaction medium at a flow rate of 2.8 cm3 min−1 was found optimal for UV-PVG of Te(IV) in this photoreactor. Addition of H2 and temperatures higher than 900 °C were required for efficient atomization in a quartz tube atomizer indicating molecular nature of volatile species. The limit of detection and repeatability obtained for the coupling of UV-PVG with a high-resolution continuum source atomic absorption spectrometry (AAS) were 0.85 µg dm−3 and 1.2% (n = 10) at 250 µg dm−3 Te(IV), respectively. The overall generation efficiency of approximately 8% at UV-PVG conditions optimal for AAS measurements was determined. The differences, similarities and performance of the two generator arrangements are discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ogra Y (2017) Metallomics 9:435

    Article  CAS  PubMed  Google Scholar 

  2. Najimi S, Shakibaie M, Jafari E, Ameri A, Rahimi N, Forootanfar H, Yazdanpanah M, Rahimi HR (2017) Regul Toxicol Pharmacol 90:222

    Article  CAS  PubMed  Google Scholar 

  3. Ba LA, Döring M, Jamier V, Jacob C (2010) Org Biomol Chem 8:4203

    Article  CAS  PubMed  Google Scholar 

  4. Filella M, Reimann C, Biver M, Rodushkin I, Rodushkina K (2019) Environ Chem 16:215

    Article  CAS  Google Scholar 

  5. Cobelo-García A, Filella M, Croot P, Frazzoli C, Du Laing G, Ospina-Alvarez N, Rauch S, Salaun P, Schäfer J, Zimmermann S (2015) Environ Sci Pollut Res 22:15188

    Article  Google Scholar 

  6. Cava-Montesinos P, Cervera LM, Pastor A, de la Guardia M (2004) Talanta 62:173

    Article  PubMed  CAS  Google Scholar 

  7. Cava-Montesinos P, Cervera LM, Pastor A, de la Guardia M (2003) Anal Chim Acta 481:291

    Article  CAS  Google Scholar 

  8. Zhang N, Fu N, Fang ZT, Feng YH, Ke L (2011) Food Chem 124:1185

    Article  CAS  Google Scholar 

  9. Pedro J, Stripekis J, Bonivardi A, Tudino M (2008) Spectrochim Acta Part B 63:86

    Article  CAS  Google Scholar 

  10. Yildirim E, Akay P, Arslan Y, Bakirdere S, Ataman OY (2012) Talanta 102:59

    Article  CAS  PubMed  Google Scholar 

  11. Filella M, Rodushkin I (2018) Spectrochim Acta Part B 141:80

    Article  CAS  Google Scholar 

  12. Tan Q, Pan Y, Liu L, Shu SB, Liu Y (2019) Microchem J 144:495

    Article  CAS  Google Scholar 

  13. Dědina J, Tsalev DL (1996) Hydride generation atomic absorption spectrometry. Wiley, Chichester

    Google Scholar 

  14. Guo XM, Sturgeon RE, Mester Z, Gardner GJ (2004) Anal Chem 76:2401

    Article  CAS  PubMed  Google Scholar 

  15. Linhart O, Kolorosová-Mrázová A, Kratzer J, Hraníček J, Červený V (2019) Anal Lett 52:613

    Article  CAS  Google Scholar 

  16. Luo J, Hu ZH, Xu FJ, Geng DX, Tang XL (2022) Microchem J 174:107053

    Article  CAS  Google Scholar 

  17. Sun YC, Chang YC, Su CK (2006) Anal Chem 78:2640

    Article  CAS  PubMed  Google Scholar 

  18. Leonori D, Sturgeon RE (2019) J Anal At Spectrom 34:636

    Article  CAS  Google Scholar 

  19. Sturgeon RE (2017) J Anal At Spectrom 32:2319

    Article  CAS  Google Scholar 

  20. Rybínová M, Červený V, Hraníček J, Rychlovský P (2015) Chem Listy 109:930

    Google Scholar 

  21. Romanovskiy K, Bolshov M, Münz A, Temerdashev Z, Burylin M, Sirota K (2018) Talanta 187:370

    Article  CAS  PubMed  Google Scholar 

  22. Zheng CB, Ma Q, Wu L, Hou XD, Sturgeon RE (2010) Microchem J 95:32

    Article  CAS  Google Scholar 

  23. Sturgeon RE, Pagliano E (2020) J Anal At Spectrom 35:1720

    Article  CAS  Google Scholar 

  24. de Quadros DPC, Borges DLG (2014) Microchem J 116:244

    Article  CAS  Google Scholar 

  25. Hu J, Sturgeon RE, Nadeau K, Hou XD, Zheng CB, Yang L (2018) Anal Chem 90:4112

    Article  CAS  PubMed  Google Scholar 

  26. de Oliveira RM, Borges DLG (2018) J Anal At Spectrom 33:1700

    Article  Google Scholar 

  27. Zhou J, Deng D, Su YY, Lv Y (2019) Microchem J 146:359

    Article  CAS  Google Scholar 

  28. Wang YL, Lin LL, Liu JX, Mao XF, Wang JH, Qin DY (2016) Analyst 141:1530

    Article  CAS  PubMed  Google Scholar 

  29. Vyhnanovský J, Yildiz D, Štádlerová B, Musil S (2021) Microchem J 164:105997

    Article  CAS  Google Scholar 

  30. Vyhnanovský J, Sturgeon RE, Musil S (2019) Anal Chem 91:13306

    Article  PubMed  CAS  Google Scholar 

  31. Nováková E, Horová K, Červený V, Hraníček J, Musil S (2020) J Anal At Spectrom 35:1380

    Article  Google Scholar 

  32. Zeng W, Hu J, Chen HJ, Zou ZR, Hou XD, Jiang XM (2020) J Anal At Spectrom 35:1405

    Article  CAS  Google Scholar 

  33. Musil S, Vyhnanovský J, Sturgeon RE (2021) Anal Chem 93:16543

    Article  CAS  PubMed  Google Scholar 

  34. Gao Y, Xu M, Sturgeon RE, Mester Z, Shi ZM, Galea R, Saull P, Yang L (2015) Anal Chem 87:4495

    Article  CAS  PubMed  Google Scholar 

  35. Šoukal J, Sturgeon RE, Musil S (2018) Anal Chem 90:11688

    Article  PubMed  CAS  Google Scholar 

  36. Grinberg P, Sturgeon RE (2009) J Anal At Spectrom 24:508

    Article  CAS  Google Scholar 

  37. He HY, Peng XH, Yu Y, Shi ZM, Xu M, Ni S, Gao Y (2018) Anal Chem 90:5737

    Article  CAS  PubMed  Google Scholar 

  38. Jeníková E, Nováková E, Hraníček J, Musil S (2022) Anal Chim Acta 1201:339634

    Article  PubMed  CAS  Google Scholar 

  39. Dong L, Chen HJ, Ning YY, He YW, Yu Y, Gao Y (2022) Anal Chem 94:4770

    Article  CAS  PubMed  Google Scholar 

  40. Rybínová M, Červený V, Hraníček J, Rychlovský P (2016) Microchem J 124:584

    Article  CAS  Google Scholar 

  41. Rybínová M, Červený V, Rychlovský P (2015) J Anal At Spectrom 30:1752

    Article  CAS  Google Scholar 

  42. Rybínová M, Musil S, Červený V, Vobecký M, Rychlovský P (2016) Spectrochim Acta Part B 123:134

    Article  CAS  Google Scholar 

  43. Linhart O, Smolejová J, Červený V, Hraníček J, Nováková E, Resslerová T, Rychlovský P (2016) Monatsh Chem 147:1447

    Article  CAS  Google Scholar 

  44. Nováková E, Linhart O, Červený V, Rychlovský P, Hraníček J (2017) Spectrochim Acta Part B 134:98

    Article  CAS  Google Scholar 

  45. Nováková E, Rybínová M, Hraníček J, Rychlovský P, Červený V (2018) J Anal At Spectrom 33:118

    Article  Google Scholar 

  46. Dědina J, Welz B (1992) J Anal At Spectrom 7:307

    Article  Google Scholar 

  47. Zhen YF, Chen HJ, Zhang M, Hu J, Hou XD (2021) Appl Spectrosc Rev 57:318

    Article  CAS  Google Scholar 

  48. Li L, Qian HF, Fang NH, Ren JC (2006) J Lumin 116:59

    Article  CAS  Google Scholar 

  49. Gao MY, Kirstein S, Möhwald H, Rogach AL, Kornowski A, Eychmüller A, Weller H (1998) J Phys Chem B 102:8360

    Article  CAS  Google Scholar 

  50. Xu FJ, Zou ZR, He J, Li MT, Xu KL, Hou XD (2018) Chem Commun 54:4874

    Article  CAS  Google Scholar 

  51. Bufková K, Musil S, Kratzer J, Dvořák P, Mrkvičková M, Voráč J, Dědina J (2020) Spectrochim Acta Part B 171:105947

    Article  CAS  Google Scholar 

  52. Sagapova L, Musil S, Kodríková B, Svoboda M, Kratzer J (2021) Anal Chim Acta 1168:338601

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Charles University for financial support. This research was carried out within the framework of Specific University Research (Project SVV 260560) and with grant support of the Grant Agency of Charles University (Project GA UK 516119) and the Czech Academy of Sciences (Institutional support RVO: 68081715).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Jeníková.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeníková, E., Nováková, E., Ruxová, H. et al. UV-photochemical vapor generation of tellurium in a thin-film photoreactor with fast stripping of volatile compounds. Monatsh Chem 153, 811–819 (2022). https://doi.org/10.1007/s00706-022-02954-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-022-02954-4

Keywords

Navigation