Skip to main content

Advertisement

Log in

A study of 5-lipoxygenase inhibitors invoking DFT-based descriptor nucleophilicity index

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The overproduction of pro-inflammatory mediators is controlled by leukotrienes, viz. the 5-lipoxygenase inhibitors. These hold therapeutic importance in the treatment of a range of diseases such as rheumatoid arthritis, asthma, inflammatory bowel infection, and some forms of cancer. Owing to this, there has been an increase in the exploration of competent therapeutic agents meant for protein 5-lipooxygenase and at present, this practice is largely dependent on Quantitative Structure–Activity Relationship (QSAR). Nucleophilicity index is a significant electronic parameter which plays a crucial part in such studies. In this work, QSAR models are developed for some derivatives of benzoquinone in terms of nucleophilicity index invoking regression approach. The study entails prediction of inhibitory activity in terms of inhibitory concentration. Robustness and predictability of the nucleophilicity index–QSAR model is tested through cross-validation and test set activity prediction. Satisfactory results are produced by the model presenting the reliability of using nucleophilicity index as descriptor for inhibitory activity studies. It is, however, recommended that for future studies the above descriptor should be employed together with other relevant descriptors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jakschik BA, Lee LH (1980) Nature 287:51

    Article  CAS  Google Scholar 

  2. Funk CD (2001) Science 294:1871

    Article  CAS  Google Scholar 

  3. Haeggstrom JZ, Funk CD (2011) Chem Rev 111:5866

    Article  Google Scholar 

  4. Ghosh J, Myers CE (1997) Biochem Biophys Res Commun 235:418

    Article  CAS  Google Scholar 

  5. Ghosh J (2003) Biochem Biophys Res Commun 307:342

    Article  CAS  Google Scholar 

  6. Hennig R, Grippo P, Ding XZ, Rao SM, Buchler MW, Friess H, Talamonti MS, Bell RH, Adrian TE (2005) Cancer Res 65:6011

    Article  CAS  Google Scholar 

  7. Melstrom LG, Bentrem DJ, Salabat MR, Kennedy TJ, Ding XZ, Strouch M, Rao SM, Witt RC, Ternent CA, Talamonti MS, Bell RH, Adrian TA (2008) Clin Cancer Res 14:6525

    Article  CAS  Google Scholar 

  8. Chen Y, Hu Y, Zhang H, Peng C, Li S (2009) Nat Genet 41:783

    Article  CAS  Google Scholar 

  9. Young RN (1999) Eur J Med Chem 34:671

    Article  CAS  Google Scholar 

  10. Werz O, Steinhilber D (2005) Biochem Pharmacol 70:327

    Article  CAS  Google Scholar 

  11. Wenzel SE, Kamada AK (1996) Ann Pharmacother 30:858

    Article  CAS  Google Scholar 

  12. Liu MC, Dube LM, Lancaster J (1996) J Allergy Clin Immunol 98:859

    Article  CAS  Google Scholar 

  13. Steinhilber D, Hofmann B (2014) Basic Clin Pharmacol Toxicol 114:70

    Article  CAS  Google Scholar 

  14. Tandon H, Chakraborty T, Suhag V (2019) Res Med Eng Sci 7:791

    Google Scholar 

  15. Tandon H, Chakraborty T, Suhag V (2019) Chem Biomol Eng 4:45

    Google Scholar 

  16. Tandon H, Chakraborty T, Suhag V (2020) Found Chem 22:335

    Article  CAS  Google Scholar 

  17. Balasubramanian K (2022) Computational and artificial intelligence techniques for drug discovery & administration. In: Kenakin T (ed) Comprehensive pharmacology. Elsevier, p 553

    Google Scholar 

  18. Balasubramanian K (2018) Curr Top Med Chem 18:2774

    Article  CAS  Google Scholar 

  19. Eren G, Macchiarulo A, Banoglu E (2012) Mol Inf 31:123

    Article  CAS  Google Scholar 

  20. Sharma MC (2014) Med Chem Res 23:1797

    Article  CAS  Google Scholar 

  21. Aparoy P, Suresh K, Reddy KK, Reddanna P (2011) Bioorg Med Chem Lett 21:456

    Article  CAS  Google Scholar 

  22. Ul-Haq Z, Khan N, Zafar SK, Moin ST (2016) Eur J Pharm Sci 88:26

    Article  CAS  Google Scholar 

  23. Filosa R, Peduto A, Schaible AM, Krauth V, Weinigel C, Barz D, Petronzi C, Bruno F, Roviezzo F, Spaziano G, Agostino BD, De Rosa M, Werz O (2015) Eur J Med Chem 94:132

    Article  CAS  Google Scholar 

  24. Masayuki F, Tanihiro Y, Kenkichi O, Shozo Y (1984) Biochim Biophys Acta Lipids Lipid Metabol 795:458

    Article  Google Scholar 

  25. Lee EJ, Kim JS, Kim HP, Lee JH, Kang SS (2010) Food Chem 120:134

    Article  CAS  Google Scholar 

  26. Schewe T, Kühn H, Sies H (2001) J Nutr 132:1825

    Article  Google Scholar 

  27. Roy K (2004) Mol Diversity 8:321

    Article  CAS  Google Scholar 

  28. Agrawal VK, Gupta M, Singh J, Khadikar PV (2005) Bioorg Med Chem 13:2109

    Article  CAS  Google Scholar 

  29. Huilgol MI, Sriram V, Balasubramanian K (2022) Mol Phys 120:e1987542

    Article  Google Scholar 

  30. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

    Article  CAS  Google Scholar 

  31. De Proft F, Liu S, Parr RG (1997) J Chem Phys 107:3000

    Article  Google Scholar 

  32. Tandon H, Chakraborty T, Suhag V (2019) J Mol Model 25:303

    Article  Google Scholar 

  33. Tandon H, Ranjan P, Chakraborty T, Suhag V (2021) Mol Diversity 25:249

    Article  CAS  Google Scholar 

  34. Tandon H, Chakraborty T, Suhag V (2021) Theor Chem Acc 140:105

    Article  CAS  Google Scholar 

  35. Tandon H, Yadav P, Chakraborty T, Suhag V (2022) J Organomet Chem 960:122229

    Article  CAS  Google Scholar 

  36. Tandon H, Chakraborty T, Suhag V (2019) Int J Quant Struct-Prop Relat 4:99

    Google Scholar 

  37. Chattaraj PK, Maiti B (2001) J Phys Chem A 105:169

    Article  CAS  Google Scholar 

  38. Minitab 17 Statistical Software (2010) [Computer Software] Minitab, Inc., State College, PA (www.minitab.com)

  39. Hawkins DM, Basak SC, Mills D (2003) J Chem Inf Comput Sci 43:579

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Tanmoy Chakraborty is thankful to Sharda University for providing computational and a research facility.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiteshi Tandon or Tanmoy Chakraborty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 395 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, P., Tandon, H., Malik, B. et al. A study of 5-lipoxygenase inhibitors invoking DFT-based descriptor nucleophilicity index. Monatsh Chem 153, 651–656 (2022). https://doi.org/10.1007/s00706-022-02953-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-022-02953-5

Keywords

Navigation