Skip to main content
Log in

Estimation of the cyclic voltammetry parameters for pyridine-2,6-dicarbohydrazide and its interaction with CuCl2 in various solutions

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The cyclic voltammetry of pyridine-2,6-dicarbohydrazide (H2P) was performed in three different solutions with 0.1 M concentration of KCl, NaOH, and HCl. The pH value for the supporting electrolytes varies from acidic (4.30), alkaline (9.06), and neutral (6.96). Different cyclic voltammograms were obtained in the used media and discussed as follows: no cathodic or anodic peaks of ligand was observed in neutral medium whereas in acidic solution, only reduction peak detected at − 0.56 V but in case of basic solution, both reduction and oxidation peaks appeared at − 0.06 and 0.18 V, respectively. The addition CuCl2 was also revealed to develop and explain the interaction of Cu2+ with the ligand in the applied media. The redox process of copper ion and ligand species appeared in using 0.1 M NaOH as a quasi-reversible wave and diffusion-controlled reaction. Upon application of 0.1 M HCl a detectable redox reaction of Cu2+ was observed in addition to the H2P ligand was only reduced through an irreversible process. The high evaluated stability constants and Gibbs free energies of complexation on Cu2+-H2P systems in both acidic and basic-enriched supporting electrolytes refer to the formation of stable coordinate complexes in solution measurements.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Anderson JL, Shain I (1976) Anal Chem 48:1274

    Article  CAS  Google Scholar 

  2. Becher J, Brockway DJ, Murray KS, Newman PJ, Toftlund H (1982) Inorg Chem 21:1791

    Article  CAS  Google Scholar 

  3. Deepa MB, Mamatha GP, Shergara BS, Arthobanaik Y (2012) Int J Res Chem Environ 2:153

    CAS  Google Scholar 

  4. Harmalker S, Jones SE, Sawyer DT (1983) Inorg Chem 22:2790

    Article  CAS  Google Scholar 

  5. Muhoz E, Avila JL, Camacho L, Cosano JE, Garcia-Blanco F (1988) J Electroanal Chem Interfacial Electrochem 257:281

    Article  Google Scholar 

  6. Nicholson RS, Shain I (1964) Anal Chem 36:706

    Article  CAS  Google Scholar 

  7. Kawski A, Kukiniski B, Bojarski P (2005) Chem Phys Lett 415:251

    Article  CAS  Google Scholar 

  8. Zhiyong L, Meagan S, Jia-Qian J, Sharma VK (2011) J Environ Sci Health, Part A A46:453

    Google Scholar 

  9. El-Shereafy SE, Gomaa EA, Yousif AM, Abou Elyazed A (2019) Iran J Mater Sci Eng 14:11

    Google Scholar 

  10. Nicholson RS (1965) Anal Chem 37:1351

    Article  CAS  Google Scholar 

  11. Eloul S, Kätelhön E, Batchelor-Mcauley C, Tschulik K, Compton RG (2015) J Phys Chem C119:14400

    Google Scholar 

  12. Diab M, Elsonbaty A, Gomaa E, Helmy A (2018) Sci J Damietta Fac Sci 8:93

    Google Scholar 

  13. Gomaa EA (2012) Int J Mater Chem 2:16

    Article  CAS  Google Scholar 

  14. Gomaa EA (1991) J King Saud Univ Sci 3:1411

    Google Scholar 

  15. Gomaa EA (2012) Phys Chem 50:297

    Google Scholar 

  16. Gomaa EA (2012) Am J Environ Eng 2:54

    Article  Google Scholar 

  17. Abd El-Hady MN, Gomaa EA, Al-Harazie AG (2019) J Mol Liq 276:970

    Article  CAS  Google Scholar 

  18. Abd El-Hady MN, Gomaa EA, Zaky RR, Gomaa AI (2020) J Mol Liq 305:112794

    Article  CAS  Google Scholar 

  19. Gomaa EA, Negm A, Abu-Qarn RM (2018) Measurment 125:645

    Google Scholar 

  20. Dale ACB, Craig EB (2014) The Handbook of Graphene Electrochemistry. Springer, London

    Google Scholar 

  21. Gosser DK (1993) Cyclic Voltammetry: Simulation, Analysis of Reaction Mechanisms. Wiley VCH, New York

    Google Scholar 

  22. Randles JEB (1948) Trans Faraday Soc 44:327

    Article  CAS  Google Scholar 

  23. Ševčik A (1948) Collect Czechoslov Chem Commun 13:349

    Article  Google Scholar 

  24. Bard AJ, Faulkner LR (2001) Electrochem Methods 2:580

    Google Scholar 

  25. Brownson DAC, Banks CE (2014) The Handbook of Graphene Electrochemistry. CRC Press, New York

    Book  Google Scholar 

  26. Ferrari AGM, Foster CW, Kelly PJ, Brownson DAC, Banks CE (2018) Biosensors 8:1

    Google Scholar 

  27. Gomaa E, Morsi M, Negm A, Sherif Y (2017) Int J Nano Dimens 8:89

    CAS  Google Scholar 

  28. Gomaa EA, Salem SE (2016) AASCIT Commun 3:132

    Google Scholar 

  29. Gomaa EA (2013) Eur Chem Bull 1:259

    Google Scholar 

  30. Gomaa EA, Abou Elleef EM, Mahmoud EA (2013) Eur Chem Bull 2:732

    CAS  Google Scholar 

  31. Gomaa EA, Abou Elleef EM (2013) Sci Technol 3:118

    Google Scholar 

  32. Marcus Y (1994) J Chem Soc Perkin Trans 2:1015

    Article  Google Scholar 

  33. Ghandour M, Abo-Doma R, Gomaa EA (1982) Electrochim Acta 27:159

    Article  CAS  Google Scholar 

  34. Sayah A (2005) J Am Acad Dermatol 53:191

    Article  PubMed  Google Scholar 

  35. Ngamchuea K, Eloul S, Tschulik K, Compton R (2014) J Solid State Electrochem 18:3251

    Article  CAS  Google Scholar 

  36. Patterson BA, Call TG, Jardine JJ, Origlia-Luster ML, Woolley EM (2001) J Chem Thermodyn 33:1237

    Article  CAS  Google Scholar 

  37. Molnar M, Zec S (2012) Lett Org Chem 9:401

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to express my sincere appreciation, deep thanks and my gratitude to Prof. Rania Ramadan Zaky, Dr. Mahmoud N. Abd El-Hady, and Abdullah H. Mannaa for their valuable guidance to complete this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esam A. Gomaa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mannaa, A.H., Zaky, R.R., Gomaa, E.A. et al. Estimation of the cyclic voltammetry parameters for pyridine-2,6-dicarbohydrazide and its interaction with CuCl2 in various solutions. Monatsh Chem 153, 577–587 (2022). https://doi.org/10.1007/s00706-022-02947-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-022-02947-3

Keywords

Navigation