Skip to main content
Log in

Gas- and liquid-phase ozonolysis of ethylene, butadiene, and perfluoro-olefins: solvation and the cage effect

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Quantum-chemical calculations were performed for the primary step of ozonolysis reaction of different olefins: ethylene, 1,3-butadiene, 1,1,2,2-tetrafluoroethylene, 1,1,2,3,3,3-hexafluoropropylene using B2PLYP functional (basis sets are: aug-cc-pVDZ and aug-cc-pVTZ) and M06-2x functional (6–311++G** and 6–311++G(2df,2pd)) in both gas and liquid phases. Solvent influence (water and carbon tetrachloride/tetrachloroethylene) is taken into account using the polarized continuum model (PCM), the solvation model based on density (SMD) and the Onsager model. Rate constants for the different reaction paths of addition were found. The kinetic parameters (activation enthalpy, activation entropy) are found in terms of transition state theory based on consideration of stationary points on potential energy surface. It is shown that the more solvent polarity increases the more solvation and the rate constant increase. Interestingly, this effect takes place for the both Criegee and DeMore addition channels; the last one increases more greatly. Comparisons with experimental data made it possible to estimate the effect of solvation and the cage effect separately for this reaction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Zero-point vibration energy correction is much lower than electronic energy and moreover it has the same value and sign because it is computed in terms of the same DFT method, namely, B2PLYP.

References

  1. Hall BJ, Sutherland JD (1998) Tetrahedron Lett 39:6593

    Article  CAS  Google Scholar 

  2. Lloyd AC, Atkinson R, Lurmann FW, Nitta B (1983) Atmos Environ 17:1931

    Article  CAS  Google Scholar 

  3. Razumovskii SD, Zaikov GE (1984) Ozone and its reactions with organic compounds. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  4. Decker ZCJ, Au K, Vereecken L, Sheps L (2017) Phys Chem Chem Phys 19:8541

    Article  CAS  PubMed  Google Scholar 

  5. Pfeifle M, Ma Y, Jasper AW, Harding LB, Hase WL, Klippenstein SJ (2018) J Chem Phys 148:174306

    Article  PubMed  CAS  Google Scholar 

  6. Vereecken L, Novelli A, Taraborrelli D (2017) Phys Chem Chem Phys 19:31599

    Article  CAS  PubMed  Google Scholar 

  7. Huisgen R (1963) Angew Chem Int Ed 2:633

    Article  Google Scholar 

  8. Criegee R (1975) Angew Chem Int Ed 14:745

    Article  Google Scholar 

  9. DeMore WB (1969) Int J Chem Kinet 1:209

    Article  CAS  Google Scholar 

  10. Gadzhiev OB, Ignatov SK, Krisyuk BE, Maiorov AV, Gangopadhyay S, Masunov AE (2012) J Phys Chem A 116:10420

    Article  CAS  PubMed  Google Scholar 

  11. Krisyuk BE, Maiorov AV (2011) Russ J Phys Chem B 5:790

    Article  CAS  Google Scholar 

  12. Lan Y, Wheeler SE, Houk KN (2011) J Chem Theory Comput 7:2104

    Article  CAS  PubMed  Google Scholar 

  13. Hochstetler AR (1975) J Org Chem 40:1536

    Article  CAS  Google Scholar 

  14. Baiely PS, Ward JW, Hornish RE, Potts FE (1972) Complexes and radicals produced during ozonation of olefins. In: Ch M (ed) Ozone reactions with organic compounds. American Chemical Society, Washington, p 1

    Chapter  Google Scholar 

  15. Witkowski B, Al-sharafi M, Gierczak T (2019) Environ Sci Technol 53:8823

    Article  CAS  PubMed  Google Scholar 

  16. Choe JI, Srinivasan M, Kuczkowski RL (1983) J Am Chem Soc 105:4703

    Article  CAS  Google Scholar 

  17. Wang HL, Huang D, Zhang X, Zhao Y, Chen ZM (2012) Atmos Chem Phys 12:7187

    Article  CAS  Google Scholar 

  18. Ryzhkov AB, Ariya PA (2006) Chem Phys Lett 419:479

    Article  CAS  Google Scholar 

  19. Sheps L, Rotavera B, Eskola AJ, Osborn DL, Taatjes CA, Kendrew AU, Shallcross DE, Khan MAH, Percival CJ (2017) Phys Chem Chem Phys 19:21970

    Article  CAS  PubMed  Google Scholar 

  20. Almatarneh MH, Elayan IA, Altarawneh M, Hollett JW (2019) Theor Chem Acc 138:30

    Article  CAS  Google Scholar 

  21. Reichardt C, Welton T (2010) Solvents and solvent effects in organic chemistry, 4th edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  22. Razumovskii SD (2001) J Adv Chem Phys 19:1313

    Google Scholar 

  23. Kuczkowski RL (1983) Acc Chem Res 16:42

    Article  CAS  Google Scholar 

  24. Denisov ET, Sarkisov OM, Likhtenshtein GI (2003) Chemical kinetics, fundamentals and new developments. Elsevier, Amsterdam

    Google Scholar 

  25. Krisyuk BE, Maiorov AV, Popov AA (2016) Kinet Catal 57:326

    Article  CAS  Google Scholar 

  26. Bogojeski M, Vogt-Maranto L, Tuckerman ME, Müller KR, Burke K (2020) Nat Commun 11:5223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Burns LA, Vázquez-Mayagoitia Á, Sumpter BG, Sherrill CD (2011) J Chem Phys 134:084107

    Article  PubMed  CAS  Google Scholar 

  28. Cybulsk SM, Chalasinski G, Moszynski R (1990) J Chem Phys 92:4357

    Article  Google Scholar 

  29. Cybulski SM, Lytle ML (2007) J Chem Phys 127:141102

    Article  PubMed  CAS  Google Scholar 

  30. Matczak P, Wojtulewski S (2015) J Mol Model 21:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Krisyuk BE, Maiorov AV, Mamin EA, Ovchinnikov VA, Popov AA (2015) Kinet Catal 56:76

    Article  CAS  Google Scholar 

  32. Biczysko M, Panek P, Scalmani G, Bloino J, Barone V (2010) J Chem Theory Comput 6:2115

    Article  CAS  PubMed  Google Scholar 

  33. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  34. Kalalian C, El Dib G, Singh HJ, Rao PK, Roth E, Chakir A (2020) Atmos Environ 223:117306

    Article  CAS  Google Scholar 

  35. Zhang Y, Xu X, Goddard WA (2009) Proc Natl Acad Sci USA 106:4963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Denis PA (2011) Theor Chem Acc 129:219

    Article  CAS  Google Scholar 

  37. Kiryukhin DP, Krisyuk BE, Maiorov AV (2021) Russ Chem Bull 70:132

    Article  CAS  Google Scholar 

  38. Krisyuk BE, Mayorov AV, Mamin EA (2021) Gas-phase and liquid-phase ozonolysis of butadiene: theoretical investigation. In: Proceedings of the II International Conference on Advances in Materials, Systems and Technologies (CAMSTech-II 2021)

  39. Dowideit P, von Sonntag C (1998) Environ Sci Technol 32:1112

    Article  CAS  Google Scholar 

  40. Atkinson R, Aschmann SM, Fitz DR, Winer AM, Pitts JN Jr (1982) Int J Chem Kinet 14:13

    Article  CAS  Google Scholar 

  41. Treacy J, El Hag M, O’Farrell D, Sidebottom H (1992) Ber Bunsenges Phys Chem 3:422

    Article  Google Scholar 

  42. Atkinson R (1997) J Phys Chem Ref Data 26:215

    Article  CAS  Google Scholar 

  43. Bahta A, Simonaitis R, Heicklen J (1984) Int J Chem Kinet 16:1227

    Article  CAS  Google Scholar 

  44. Toby FS, Toby S (1975) Int J Chem Kinet 1:197

    Google Scholar 

  45. Japar SM, Wu CH, Niki H (1974) J Phys Chem 78:2318

    Article  CAS  Google Scholar 

  46. Becker KH, Schurath U, Seitz H (1974) Int J Chem Kinet 6:725

    Article  CAS  Google Scholar 

  47. Vrbaski T, Cvetanović R (1960) Can J Chem 38:1053

    Article  CAS  Google Scholar 

  48. Hanst PL, Stephens ER, Scott WE, Doerr RC (1959) Atmospheric ozone-olefin reactions. Symposium on Air Pollution Research Before The Division Of Petroleum Chemistry. American Chemical Society, Atlantic City

    Google Scholar 

  49. Acerboni G, Jensen NR, Hjorth J, Rindone B (1999) Chem Phys Lett 309:364

    Article  CAS  Google Scholar 

  50. Kiryukhin DP, Barkalov IM (2003) Russ Chem Rev 72:217

    Article  CAS  Google Scholar 

  51. Mezentsev AI, Karpov BS, Polulektov VA (1989) Dokl Akad Nauk SSSR 306:657

    CAS  Google Scholar 

  52. Acerboni G, Beukes JA, Jensen NR, Hjortha J, Myhre G, Nielsen CJ, Sundet JK (2001) Atmos Environ 35:4113

    Article  CAS  Google Scholar 

  53. Krisyuk BE, Mayorov AV, Mamin EA (2021) Gas-phase and Liquid-phase ozonolysis of hexafluoropropylene. In: Ch M (ed) Recent research and perspectives on fundamental and applied problems of geology and geophysics. Springer Nature, Berlin

    Google Scholar 

  54. Chemcraft - graphical software for visualization of quantum chemistry computations. https://www.chemcraftprog.com

  55. Jablonski M, Palusiak M (2010) J Phys Chem A 114:12498

    Article  CAS  PubMed  Google Scholar 

  56. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  57. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  58. McLean AD, Chandler GS (1980) J Chem Phys 72:5639

    Article  CAS  Google Scholar 

  59. Raghavachari K, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  Google Scholar 

  60. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) J Comp Chem 4:294

    Article  CAS  Google Scholar 

  61. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265

    Article  CAS  Google Scholar 

  62. Plumley JA, Dannenberg JJ (2011) J Comput Chem 32:1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu Y, Zhao J, Li F, Zhongfang C (2012) J Comput Chem 34:121

    Article  CAS  PubMed  Google Scholar 

  64. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JE Jr, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2013) Gaussian 09 Revision D.01. Gaussian Inc, Wallingford

    Google Scholar 

  65. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JE Jr, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 Revision C.01. Gaussian Inc, Wallingford

    Google Scholar 

  66. Peng Ch, Schlegel HB (1993) Isr J Chem 33:449

    Article  CAS  Google Scholar 

  67. Improta R, Barone V, Scalmani G, Frisch MJ (2006) J Chem Phys 125:054103

    Article  PubMed  CAS  Google Scholar 

  68. Improta R, Scalmani G, Frisch MJ, Barone V (2007) J Chem Phys 127:074504

    Article  PubMed  CAS  Google Scholar 

  69. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999

    Article  CAS  PubMed  Google Scholar 

  70. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378

    Article  CAS  PubMed  Google Scholar 

  71. Onsager L (1936) J Am Chem Soc 58:1486

    Article  CAS  Google Scholar 

  72. Wong MW, Frisch MJ, Wiberg KB (1991) Phys Chem Chem Phys 113:4776

    CAS  Google Scholar 

  73. Ignatov SK (2004) Moltran. University of Nizhny Novgorod, Novgorod

    Google Scholar 

  74. Fukui K (1981) Acc Chem Res 14:363

    Article  CAS  Google Scholar 

  75. Hratchian HP, Schlegel HB (2005) Finding minima, transition states, and following reaction pathways on Ab initio potential energy surfaces. Theory and applications of computational chemistry: the first 40 years. Elsevier, Amsterdam, p 195

    Chapter  Google Scholar 

Download references

Acknowledgements

The work was carried out using the equipment of the Center of Shared Usage “New Materials and Technologies of Emanuel Institute of Biochemical Physics,” Joint Research Center of Plekhanov Russian University of Economics, and Mass Spectrometry Data Center of National Institute of Standards and Technology, Gaithersburg, United States of America. This work was performed in accordance with the state task, state registration no. AAAA-A19-119101690058-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eldar A. Mamin.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 245 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krisyuk, B.E., Mayorov, A.V. & Mamin, E.A. Gas- and liquid-phase ozonolysis of ethylene, butadiene, and perfluoro-olefins: solvation and the cage effect. Monatsh Chem 153, 609–621 (2022). https://doi.org/10.1007/s00706-022-02946-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-022-02946-4

Keywords

Navigation