Skip to main content
Log in

Improvement of conditions for the determination of neurotransmitters in rat brain tissue by HPLC with fluorimetric detection

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Gradient elution for the determination of six selected neurotransmitters (3,4-dihydroxyphenylacetic acid, dopamine, homovanillic acid, 5-hydroxyindole-3-acetic acid, L-noradrenaline, serotonin) by HPLC with fluorescence detection on the C18 reverse phase was designed and optimized. The elution used the binary mobile phase of aqueous solution of 12 × 10−3 mol dm−3 acetic acid, 0.26 × 10−3 mol dm−3 Na2EDTA, pH = 3.5) and methanol. Furthermore, modified homogenization medium, prepared by mixing methanol and an aqueous solution (0.4 mol dm−3 perchloric acid, 6 × 10−3 mol dm−3 cysteine, 1 × 10−3 mol dm−3 L-ascorbic acid, and 0.54 × 10−3 mol dm−3 Na2EDTA) in a ratio of 1:1 (v/v), was introduced in the preparation of rat brain tissue to increase the stability of neurotransmitters in the sample before the analysis. Both developed procedures were successfully applied to the determination of selected neurotransmitters in authentic brain tissue samples from rats affected by morphine and/or morphine abstinence. The statistically significant increases in dopamine, 3,4-dihydroxyphenylacetic acid, and serotonin levels in the striatum, as well as L-noradrenaline in the cerebral cortex of rats affected by intraperitoneal administration of morphine, were measured.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. von Bohlen und Halbach O, Dermietzel R (2006) Neurotransmitters and neuromodulators: Handbook of receptors and biological effects, 2nd edn. Wiley, Weinheim

  2. Perry M, Li Q, Kennedy RT (2009) Anal Chim Acta 653:1

    Article  CAS  Google Scholar 

  3. Pradhan T, Jung HS, Jang JH, Kim TW, Kang C, Kim SJ (2014) Chem Soc Rev 43:4684

    Article  CAS  Google Scholar 

  4. Matys J, Gieroba B, Jóźwiak K (2020) J Pharm Biomed Anal 180:113079

    Article  CAS  Google Scholar 

  5. Drastichova Z, Hejnova L, Moravcova R, Novotny J (2021) Life 11:683

    Article  CAS  Google Scholar 

  6. Ujcikova H, Hejnova L, Eckhardt A, Roubalova L, Novotny J (2021) Neurochem Int 144:104975

    Article  CAS  Google Scholar 

  7. De Benedetto GE, Fico D, Pennetta A, Malitesta C, Nicolardi G, Lofrumento DD, De Nuccio F, La Pesa V (2014) J Pharm Biomed Anal 98:266

    Article  Google Scholar 

  8. Haleem DJ, Nawaz S, Salman T (2018) Pharmacol Biochem Behav 170:71

    Article  CAS  Google Scholar 

  9. Thorré K, Pravda M, Sarre S, Ebinger G, Michotte Y (1997) J Chromatogr B 694:297

    Article  Google Scholar 

  10. Zhang LH, Cai HL, Jiang P, Li HD, Cao LJ, Dang RL, Zhu WY, Deng Y (2015) Anal Methods 7:3929

    Article  CAS  Google Scholar 

  11. Fonseca BM, Rodrigues M, Cristóvão AC, Gonçalves D, Fortuna A, Bernardino L, Falcão A, Alves G (2017) J Chromatogr B 1049–1050:51

    Article  Google Scholar 

  12. Van Schoors J, Lens C, Maes K, Michotte Y, Smolders I, Van Eeckhaut A (2015) J Chromatogr B 998–999:63

    Article  Google Scholar 

  13. El-Sherbeni AA, Stocco MR, Wadji FB, Tyndale RF (2020) J Chromatogr A 1627:461403

    Article  CAS  Google Scholar 

  14. Zhao HX, Mu H, Bai YH, Yu H, Hu YM (2011) J Pharm Anal 1:208

    Article  CAS  Google Scholar 

  15. Gromov LA, Filonenko MA (1999) Neurophysiology 31:115

    Article  Google Scholar 

  16. Lakshmana MK, Raju TR (1997) Anal Biochem 246:166

    Article  CAS  Google Scholar 

  17. Yoshitake T, Kehr J, Yoshitake S, Fujino K, Nohta H, Yamaguchi M (2004) J Chromatogr B 807:177

    Article  CAS  Google Scholar 

  18. Galaj E, Han X, Shen H, Jordan CJ, He Y, Humburg B, Bi GH, Xi ZX (2020) J Neurosci 40:8853

    Article  CAS  Google Scholar 

  19. Kosten TR, George TP (2002) Sci Pract Perspect 1:13

    Article  Google Scholar 

  20. Narita M, Mizuo K, Mizoguchi H, Sakata M, Narita M, Tseng LF, Suzuki T (2003) J Neurosci 23:1006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Czech Science Foundation (no. 19-03295S) and Charles University (the Project Cooperatio).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Nesměrák.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nováková, D., Kudláček, K., Novotný, J. et al. Improvement of conditions for the determination of neurotransmitters in rat brain tissue by HPLC with fluorimetric detection. Monatsh Chem 153, 753–758 (2022). https://doi.org/10.1007/s00706-022-02924-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-022-02924-w

Keywords

Navigation