Skip to main content

Advertisement

Log in

Energy consumption of direct current galvanostatic zinc removal from viscose production wastewater

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The work provided information on the energy consumption Ee by direct current galvanostatic separation of zinc from ZnSO4 solutions under conditions close to the electrodeposition of zinc from viscose production wastewaters. The Ee values were displayed depending on the corresponding values of current densities i and electrical conductivities of solutions κ in the form of 3D diagrams. The diagrams showed that Ee grew significantly with increasing i, with a significant influence of κ. In the analysis of the present processes and other desirable directions of research, both previous findings from polarographic/voltammetric electrolysis (usually collected at lower current densities) and the outlined new treatments to technological/separation electrolysis (on the contrary, usually at higher values of current densities) were applied. The obtained data can serve as a reference data in further research to reduce the energy consumption of the technology used.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Booran SK, Doan HD, Lohi A (2015) Clean: Soil, Air, Water 43:368

    CAS  Google Scholar 

  2. Government Regulation of the Czech Republic No. 401/2015 Coll., on Indicators and Values of Permissible Pollution of Surface Waters and Waste Water

  3. Heyrovský J, Kůta J (1965) Principles of polarography. Publishing House, Prague

    Book  Google Scholar 

  4. Novotný L, Heyrovský M (1997) Croat Chem Acta 70:151

    Google Scholar 

  5. Šestáková I, Miholová D, Vodičková H, Mader P (1995) Electroanalysis 7:237

    Article  Google Scholar 

  6. Kočanová V, Dušek L (2016) Chem Listy 110:554

    Google Scholar 

  7. Dušek L, Kočanová V, Novotný L (2017) Recovery of zinc from wastewater by using electrodeposition. In: XXXVII. Modern Electrochemical Methods. Jetřichovice, p 31, ISBN: 978-80-905221-5-2

  8. Scholz F (ed) (2002) Electroanalytical methods. Springer, Berlin

    Google Scholar 

  9. Comninellis Ch, Chen G (2010) Electrochemistry for the environment. Springer, New York

    Book  Google Scholar 

  10. Gherasim CV, Mikulášek P (2014) Desalination 343:67

    Article  CAS  Google Scholar 

  11. Kočanová V, Cuhorka J, Dušek L, Mikulášek P (2017) Desalin Water Treat 75:342

    Article  Google Scholar 

  12. Gherasim CV, Křivčík J, Mikulášek P (2014) Chem Eng J 256:324

    Article  CAS  Google Scholar 

  13. Kumar J, Joshi H, Malyan SK (2022) Appl Sci 12:280

    Article  CAS  Google Scholar 

  14. Kalousek M (1948) Collect Czech Chem Commun 13:105

    Article  CAS  Google Scholar 

  15. Novotný L (1998) Dr. Sc. Thesis, Academic Science of the Czech Republic, Prague

  16. Novotný L (2006) Způsob elektroseparace, elektrokoagulace či elektroflotace a zařízení k jeho provádění. Czech Patent PV 2006-599, Prague

  17. Dušek L, Karásková A, Kočanová V, Novotný L, Mikulášek P (2020) J Electroanal Chem 864:114069

    Article  Google Scholar 

  18. Kočanová V (2019) PhD Thesis, University of Pardubice, Pardubice

  19. Dvořák J, Koryta J, Boháčková V (1975) Electrochemistry. Academia, Prague

    Google Scholar 

  20. Švancara I, Kalcher K, Walcarius A, Vytřas K (2012) Electroanalysis with carbon paste electrodes. CRC Press, London

    Book  Google Scholar 

  21. Yosypchuk B, Novotný L (2002) Crit Rev Anal Chem 32:141

    Article  CAS  Google Scholar 

  22. Hrdlička V, Navrátil T, Barek J, Ludvík J (2018) J Electroanal Chem 60:821

    Google Scholar 

  23. Baluchova S, Danhel A, Dejmkova H, Ostatna V, Fojta M, Schwarzova-Peckova K (2019) Anal Chim Acta 1077:30

    Article  CAS  Google Scholar 

  24. Hamzah HH, Shafize SA, Abdella A, Patel BA (2018) Electrochem Commun 96:27

    Article  CAS  Google Scholar 

  25. Patel K, Hashimoto K, Fujishima A (1992) Denki Kagaku 60:659

    Article  CAS  Google Scholar 

  26. Schwarzová-Pecková K, Vosáhlová J, Barek J, Šloufová I, Pavlová E, Petrák V, Zavazalová J (2017) Electrochim Acta 243:170

    Article  Google Scholar 

  27. Šelešovská R, Kranková B, Štěpánková M, Martinková P, Janíková L, Chýlková J, Vojs M (2018) Electroanal Chem 821:2

    Article  Google Scholar 

  28. Šelešovská R, Herynková M, Skopalová J, Kelišková-Martinková P, Janíková L, Cankár P, Bednář P, Chylková J (2019) Electroanalysis 31:363

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Student Grant Competition 2022 (SGS_2022_001) and by the project SD373001/82/30352 (2016) of the University Pardubice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Kuchtová.

Additional information

This work is dedicated to the 100th anniversary of the discovery of polarography by Nobel Prize winner Prof. Jaroslav Heyrovsky.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novotný, L., Karásková, A., Kuchtová, G. et al. Energy consumption of direct current galvanostatic zinc removal from viscose production wastewater. Monatsh Chem 153, 1111–1117 (2022). https://doi.org/10.1007/s00706-022-02915-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-022-02915-x

Keywords

Navigation