Skip to main content
Log in

A computational study on the Al-doped CuO nanocluster for CO gas sensor applications

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Al-doped copper oxide (Al-CuO) nano-structures experimentally have shown a higher sensitivity and response toward the carbon monoxide (CO) gas compared to the pristine CuO. We applied the B3LYP-gCP-D3 density functional method to illustrate the origin of this phenomenon in terms of charge transport, density of states, charge transfers, energetic as well as electronic analyses. The adsorption energy of CO on the CuO or Al-CuO nano-cluster was predicted to be − 50.9 or − 112.4 kJ/mol. The adsorption of CO adsorption did not impact on the electronic characteristics of the pristine CuO. The higher charge transfer from CO to the Al-CuO significantly destabilized its highest occupied molecular orbital level, which largely decreases the band gap. Thus, the electrical conductance implicitly increased which is responsible for the sensing mechanism. A short recovery time of 6.3 ms and a sensing response of 10.27 were predicted for the Al-CuO. We showed that the Al-CuO might be considered as a work-function-type sensor for CO gas in addition to electronic detection. The analysis of AIM shows that the C–Cu bond is more covalent compared to the C–Al bond.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mansoor K, Parkins G, Wilson L (2019) Marsh J Med 5:3

    Google Scholar 

  2. Chu Y-M, Nazir U, Sohail M, Selim MM, Lee J-R (2021) Frac Fraction 5:119

    Article  Google Scholar 

  3. Rashid S, Sultana S, Karaca Y, Khalid A, Chu Y-M (2022) Fractals 30:2240026

    Article  Google Scholar 

  4. Wang F, Khan MN, Ahmad I, Ahmad H, Abu-Zinadah H, Chu Y-M (2022) Fractals 30:22400051

    Google Scholar 

  5. Huang B, Changhe L, Zhang Y, Wenfeng D, Min Y, Yuying Y, Han Z, Xuefeng X, Dazhong W, Debnath S (2021) Chinese J Aeronaut 34:1. https://doi.org/10.1016/j.cja.2020.07.004‎

    Article  Google Scholar 

  6. Xu H-Z, Qian W-M, Chu Y-M (2022) Racsam Rev R Acad A 116:1

    Google Scholar 

  7. Duan Z, Li C, Ding W, Zhang Y, Yang M, Gao T, Cao H, Xu X, Wang D, Mao C (2021) Chin J Mech Eng 34:1

    Article  CAS  Google Scholar 

  8. Wang M-K, Hong M-Y, Xu Y-F, Shen Z-H, Chu Y-M (2020) J Math Inequal 14:1

    Article  Google Scholar 

  9. Liu M, Li C, Cao C, Wang L, Li X, Che J, Yang H, Zhang X, Zhao H, He G (‎2021) Food Eng Rev 13:822

    Article  CAS  Google Scholar 

  10. Zhao T-H, Chu Y-M, Liu B-Y (2012) Abstr Appl Anal 2012:302635

    Google Scholar 

  11. Ji X, Hou C, Shi M, Yan Y, Liu Y (2020). Food Rev Int. https://doi.org/10.1080/87559129.2020.1771363

    Article  Google Scholar 

  12. Xiaolong J, Baixiang P, Hehui D, Bingbing C, Hui N, Yizhe Y (2021). Food Rev Int. https://doi.org/10.1080/87559129.2021.1904973

    Article  Google Scholar 

  13. Li Z, Wang J, Che S (2021) Sustainability 13:5403

    Article  CAS  Google Scholar 

  14. Wang Y, Li C, Zhang Y, Yang M, Li B, Dong L, Wang J (2018) Int J Precis Eng Manuf - Green Technol 5:327

    Article  CAS  Google Scholar 

  15. Zhao T-H, Chu Y-M, Jiang Y-L, Li Y-M (2013) Abstr Appl Anal 2013:348326

    Google Scholar 

  16. Li T, Yin W, Gao S, Sun Y, Xu P, Wu S, Wei G (2022) Nanomaterials 12:982. https://doi.org/10.3390/nano12060982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chu Y, Zhao T, Liu B (2014) J Math Inequal 8:201

    Article  Google Scholar 

  18. Sun R, He C, Fu L, Huo J, Zhao C, Li X, Wang S (2022) Chin Chem Lett 33:527

    Article  CAS  Google Scholar 

  19. Wang M, Jiang C, Zhang S, Song X, Tang Y, Cheng H (2018) Nat Chem 10:667

    Article  CAS  PubMed  Google Scholar 

  20. Mu S, Liu Q, Kidkhunthod P, Zhou X, Wang W, Tang Y (2020) Natl Sci Rev 8:nwaa178

  21. Hu Z, Zhang L, Huang J, Feng Z, Xiong Q, Ye Z, Yu Z (2021) Nanoscale 13:8264

    Article  CAS  PubMed  Google Scholar 

  22. Chu Y-M, Wang H, Zhao T-H (2014) J Inequal Appl 2014:1

    Article  Google Scholar 

  23. Sun H, Zhao T, Chu Y, Liu B (2014) J Math Inequal 8:287

    Article  Google Scholar 

  24. Wang P, Yao T, Li Z (2020) Compos Sci Technol 198:108307

    Article  CAS  Google Scholar 

  25. Zhao T-H, Yang Z-H, Chu Y-M (2015) J Inequal Appl 2015:1

    Article  Google Scholar 

  26. Wang R, He C, Chen W, Fu L, Zhao C, Huo J, Sun C (2021) Nanoscale 13:19247

    Article  CAS  PubMed  Google Scholar 

  27. Zhao C, Xi M, Huo J, He C (2021) Phys Chem Chem Phys 23:23219

    Article  CAS  PubMed  Google Scholar 

  28. Zhang W, Asce M, Tang Z, Yang Y, Wei J (2021) J Compos Construct 252:04021002

    Article  Google Scholar 

  29. Zhao T-H, Shi L, Chu Y-M (2020) Racsam Rev R Acad A 114:1

    Google Scholar 

  30. Zhao T-H, Zhou B-C, Wang M-K, Chu Y-M (2019) J Inequal Appl 2019:1

    Article  CAS  Google Scholar 

  31. Zhao T-H, Wang M-K, Zhang W, Chu Y-M (2018) J Inequal Appl 2018:1

    Article  Google Scholar 

  32. Chu Y, Zhao T (2016) Math Inequal Appl 19:589

    Google Scholar 

  33. Zhao T-H, Shen Z-H, Chu Y-M (2021) Racsam Rev R Acad A 115:1

    Google Scholar 

  34. Song Y-Q, Zhao T-H, Chu Y-M, Zhang X-H (2015) J Inequal Appl 2015:1

    Article  CAS  Google Scholar 

  35. Chu Y-M, Zhao T-H (2015) J Inequal Appl 2015:1

    Article  CAS  Google Scholar 

  36. Liu W, Zheng Y, Wang Z, Wang Z, Yang J, Chen M, Wei L (2021) Adv Mater Interfaces 8:2001978. https://doi.org/10.1002/admi.202001978‎

    Article  CAS  Google Scholar 

  37. Zhang J, Li C, Zhang Y, Yang M, Jia D, Liu G, Hou Y, Li R, Zhang N, Wu Q (2018) J Clean Prod 193:236

    Article  CAS  Google Scholar 

  38. Chu H-H, Zhao T-H, Chu Y-M (2020) Math Slov 70:1097

    Article  Google Scholar 

  39. Zhao T-H, He Z-Y, Chu Y-M (2020) AIMS Math 5:6479

    Article  Google Scholar 

  40. Zhao T-H, Wang M-K, Chu Y-M (2020) AIMS Math 5:4512

    Article  Google Scholar 

  41. Wang J, Lu S, Wang Y, Li C (2020) J Energy Stor 32:101800

    Article  Google Scholar 

  42. Tang L, Zhang Y, Li C, Zhou Z, Nie X, Chen Y, Cao H, Liu B, Zhang N, Said Z (2022) Chin J Mech Eng 35:1

    Article  CAS  Google Scholar 

  43. Liu H, Wang Y, Li Q, Yang N, Wang Z, Wang Q (2022) Biomass Bioenergy 158:106343. https://doi.org/10.1016/j.biombioe.2022.106343‎

    Article  Google Scholar 

  44. Li BK, Li CH, Zhang YB et al (2016) Chinese J Aeronaut 29:1084

    Article  Google Scholar 

  45. Zhao T-H, He Z-Y, Chu Y-M (2021) Comput Method Funct Theory 21:413

    Article  Google Scholar 

  46. Zhao T-H, Wang M-K, Chu Y-M (2021) J Math Inequal 15:701

    Article  Google Scholar 

  47. Zhao T-H, Wang M-K, Chu Y-M (2021) Racsam Rev R Acad A 115:1

    Google Scholar 

  48. Baek J-H, Bae G-T (2020) J Korean Chem Soc 64:61

    CAS  Google Scholar 

  49. Beheshtian J, Peyghan AA, Bagheri Z, Tabar MB (2013) Struct Chem 25:1

    Article  CAS  Google Scholar 

  50. Moradi M, Peyghan AA, Bagheri Z, Kamfiroozi M (2012) J Mol Model 18:3535

    Article  CAS  PubMed  Google Scholar 

  51. Noei M, Salari AA, Ahmadaghaei N, Bagheri Z, Peyghan AA (2013) Comp Rend Chim 16:985

    Article  CAS  Google Scholar 

  52. Iqbal MA, Wang Y, Miah MM, Osman MS (2022) Frac Fraction 6:4

    Article  Google Scholar 

  53. Beheshtian J, Bagheri Z, Kamfiroozi M, Ahmadi A (2012) J Mol Model 18:2653

    Article  CAS  PubMed  Google Scholar 

  54. Ahmadi A, Kamfiroozi M, Beheshtian J, Hadipour NL (2011) Struct Chem 22:1261

    Article  CAS  Google Scholar 

  55. Baei MT, Peyghan AA, Bagheri Z (2012) Chin Chem Lett 23:965

    Article  CAS  Google Scholar 

  56. Baei MT, Peyghan AA, Bagheri Z (2013) Struct Chem 24:1099

    Article  CAS  Google Scholar 

  57. Chu Y-M, Shankaralingappa B, Gireesha B, Alzahrani F, Khan MI, Khan SU (2022) Appl Math Comput 419:126883

    Google Scholar 

  58. Nazeer M, Hussain F, Khan MI, El-Zahar ER, Chu Y-M, Malik M (2022) Appl Math Comput 420:126868

    Google Scholar 

  59. Zhao T-H, Wang M-K, Hai G-J, Chu Y-M (2022) Racsam Rev R Acad A 116:1

    Google Scholar 

  60. Yu Y, Yi X, Zhang J, Tong Z, Chen C, Ma M, Chen B (2021) Catal Sci Technol 11:5125. https://doi.org/10.1039/D1CY00467K

    Article  CAS  Google Scholar 

  61. Liu Y, Li B, Lei X, Liu S, Zhu H, Ding E, Ning P (2022) Chem Eng J (Lausanne, ‎Switzerland : 1996) 428:131991. https://doi.org/10.1016/j.cej.2021.131991‎

    Article  CAS  Google Scholar 

  62. Zhao T, Wang M, Chu Y (2022) Acta Math Sci 42:491

    Article  Google Scholar 

  63. Zha T-H, Castillo O, Jahanshahi H, Yusuf A, Alassafi MO, Alsaadi FE, Chu Y-M (2021) Appl Comput Math 20:160

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limei Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Cheng, Z., Du, J. et al. A computational study on the Al-doped CuO nanocluster for CO gas sensor applications. Monatsh Chem 153, 321–329 (2022). https://doi.org/10.1007/s00706-022-02906-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-022-02906-y

Keywords

Navigation