Skip to main content
Log in

GC–MS methods for the evaluation of the performance of electrochemical water treatment for the degradation of pollutants from paint industry effluents

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Global production of paint generates a large volume of waste which affects human health and creates an environmental burden. The purpose of this study has been the evaluation of the performance and the control of the efficiency of a hybrid electro-thermochemical wastewater treatment technology able to transform dissolved pollutants into metal oxide/carbide powders and to produce water ready to be reused in manufacturing cycles. In this study, simple and fast method based on liquid–liquid extraction combined with gas chromatography–mass spectrometry has been proposed for the identification of environmental pollutants in industrial water effluents. Parameters affecting the liquid–liquid extraction efficiency were thoroughly studied to ensure high accuracy and precision of the method. The proposed method was successfully applied to the identification and determination of markers levels in a comparison study between the original and treated water effluents. Removal efficiency factors were defined and the power of removal was discussed in terms of weak, moderate, and significant markers removal. The evaluation showed significant removal of markers in water treatment processes employing various additives.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kong Z, Li L, Xue Y, Yang M, Li YY (2019) J Clean Prod 231:913

    Article  CAS  Google Scholar 

  2. Subki NS, Akhir NM, Halim NSA, Yusoff NRN (2020) IOP Conf Ser Earth Environ Sci 549:012066

    Article  Google Scholar 

  3. Sun Y, Zhou S, Sun W, Zhu S, Zheng H (2020) Sep Purif Technol 241:116737

    Article  CAS  Google Scholar 

  4. Li J, Pham AN, Dai R, Wan Z, Waite TD (2020) J Hazard Mater 392:122261

    Article  CAS  Google Scholar 

  5. Sheth Y, Dharaskar S, Khalid M, Sonawane S (2021) Sustain Energy Tech 43:100951

    Google Scholar 

  6. Gondal MA, Hussain T (2007) Talanta 71:73

    Article  CAS  Google Scholar 

  7. Mohsen AELS, Hasanin EA, Kamel MM (2010) Am Eurasian J Agric Environ Sci 8:597

    Google Scholar 

  8. Vishali S, Roshini SK, Samyuktha MR, Ashish K (2018) Environ Monit Assess 190:587

    Article  CAS  Google Scholar 

  9. Monga D, Basu S (2019) Adv Powder Technol 30:1089

    Article  CAS  Google Scholar 

  10. Wang Y, Ding K, Xu R, Yu D, Wang W, Gao P, Li B (2020) J Clean Prod 247:119108

    Article  CAS  Google Scholar 

  11. Sharma S, Simsek H (2019) Chemosphere 221:630

    Article  CAS  Google Scholar 

  12. Ahmad T, Belwal T, Li L, Ramola S, Aadil RM, Xu Y, Zisheng L (2020) Trends Food Sci Tech 99:21

    Article  CAS  Google Scholar 

  13. An C, Huang G, Yao Y, Zhao S (2017) Sci Total Environ 579:537

    Article  CAS  Google Scholar 

  14. Ahmad M, Bajahlan AS, Hammad WS (2008) Environ Monit Assess 147:297

    Article  CAS  Google Scholar 

  15. Makoś P, Przyjazny A, Boczkaj G (2018) J Chromatogr A 1570:28

    Article  Google Scholar 

  16. Pothitou P, Voutsa D (2008) Chemosphere 73:1716

    Article  CAS  Google Scholar 

  17. Nurerk P, Llompart M, Donkhampa P, Bunkoed O, Dagnac T (2020) J Chromatogr A 1610:460564

    Article  CAS  Google Scholar 

  18. Randall PM (1992) J Hazard Mater 29:2755

    Article  Google Scholar 

  19. Noruzman AH, Apandi NM (2020) J Adv Res Bus Managem Stud 20:28

    Article  Google Scholar 

  20. Krithika D, Philip L (2016) Int Biodeter Biodegr 107:31

    Article  CAS  Google Scholar 

  21. Lin KF (2016) Alkyd resins. Kirk-othmer encyclopedia of chemical technology. John Wiley and Sons, New Jersey

    Google Scholar 

  22. Dalgaard M, Hass U, Vinggaard AM, Jarfelt K, Lam HR, Sørensen IK, Sommer HM, Ladefoged O (2013) Reprod Toxicol 17:163

    Article  Google Scholar 

  23. Ghisari M, Bonefeld-Jorgensen EC (2009) Toxicol Lett 189:67

    Article  CAS  Google Scholar 

  24. AbuGhazaleh AA, Riley MB, Thies EE (2005) J Dairy Sc 88:4334

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Slovak Research and Development Agency under the Contract No. APVV-19-0149. The work was supported by the Scientific Grant Agency of the Ministry of Education of the Slovak Republic (VEGA project no. 1/0412/20) and the Program for the Support of Excellent Teams of Young Researchers of STU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Hrouzková.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szarka, A., Viktoryová, N., Horváth, G. et al. GC–MS methods for the evaluation of the performance of electrochemical water treatment for the degradation of pollutants from paint industry effluents. Monatsh Chem 153, 161–169 (2022). https://doi.org/10.1007/s00706-022-02890-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-022-02890-3

Keywords

Navigation