Skip to main content
Log in

Substituted-amidine derivatives of diazabicyclooctane as prospective β-lactamase inhibitors

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Discovery of β-lactamase inhibitors is a continuous process due to inherent capability of resistance in bacteria against existing inhibitors. Diazabicyclooctane ring is a non-β-lactam motif capable of inhibiting the β-lactamases. As part of our efforts, we synthesized a series of diazabicyclooctane derivatives where C2 position of the bicyclic ring is linked with various substituted-amidine moieties. The newly synthesized compounds, alone and in combination with meropenem, were tested against ten bacterial strains for their antibacterial activity in vitro. All compounds did not show antibacterial tendency when tested alone (MIC > 64 mg/dm3) however, showed antibacterial activity in combination with meropenem. All compounds enhanced the potency of meropenem (MIC 2–4 mg/dm3) with MIC values ranging from < 0.125 to 1 mg/dm3 indicating their prospective β-lactamase inhibition capability. One derivative proved to be the most potent among all, and is comparable to avibactam, against eight out of ten bacterial strains.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Saudagar PS, Survase SA, Singhal RS (2008) Biotechnol Adv 26:335

    Article  CAS  PubMed  Google Scholar 

  2. Finlay J, Miller L, Poupard JA (2003) J Antimicrob Chemother 52:18

    Article  CAS  PubMed  Google Scholar 

  3. Shlaes DM (2013) Ann NY Acad Sci 1277:105

    Article  CAS  PubMed  Google Scholar 

  4. Ball P (2007) Int J Antimicrob Agents 30(Suppl 2):S113

    Article  CAS  PubMed  Google Scholar 

  5. Bush K, Bradford PA (2016) Cold Spring Harb Perspect Med 6:a025247

  6. González-Bello C, Rodríguez D, Pernas M, Rodríguez A, Colchón E (2020) J Med Chem 63:1859

    Article  PubMed  Google Scholar 

  7. Deketelaere S, Van Nguyen T, Stevens CV, D’Hooghe M (2017) ChemistryOpen 6:301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bouchet F, Atze H, Fonvielle M, Edoo Z, Arthur M, Ethève-Quelquejeu M, Iannazzo L (2020) J Med Chem 63:5257

    Article  CAS  PubMed  Google Scholar 

  9. Papp-Wallace KM, Nguyen NQ, Jacobs MR, Bethel CR, Barnes MD, Kumar V, Bajaksouzian S, Rudin SD, Rather PN, Bhavsar S, Ravikumar T, Deshpande PK, Patil V, Yeole R, Bhagwat SS, Patel MV, van den Akker F, Bonomo RA (2018) J Med Chem 61:4067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Butler MS, Paterson DL (2020) J Antibiot 73:329

    Article  CAS  Google Scholar 

  11. Köck R, Cuny C (2020) Med Klin. Intensivmed Notfallmed 115:189

    Article  Google Scholar 

  12. Nichols WW, Newell P, Critchley IA, Riccobene T, Das S (2018) Antimicrob Agents Chemother 62:e02446

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Duin D, Bonomo RA (2016) Clin Infect Dis 63:234

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rodriguez BA, Girotto JE, Nicolau DP (2018) Curr Pediatr Rev 14:97

    Article  CAS  PubMed  Google Scholar 

  15. Morinaka A, Tsutsumi Y, Yamada M, Suzuki K, Watanabe T, Abe T, Furuuchi T, Inamura S, Sakamaki Y, Mitsuhashi N, Ida T, Livermore DM (2015) J Antimicrob Chemother 70:2779

    Article  CAS  PubMed  Google Scholar 

  16. Gordon EM, Duncton MAJ, Gallop MA (2018) J Med Chem 61:10340

    Article  CAS  PubMed  Google Scholar 

  17. Mushtaq S, Vickers A, Woodford N, Livermore DM (2017) J Antimicrob Chemother 72:1688

    Article  CAS  PubMed  Google Scholar 

  18. Tehrani K, Martin NI (2018) MedChemComm 9:1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Iqbal Z, Zhai L, Gao Y, Tang D, Ma X, Ji J, Sun J, Ji J, Liu Y, Jiang R, Mu Y, He L, Yang H, Yang Z (2021) Beilstein J Org Chem 17:711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gao Y, Liu Y, Iqbal Z, Sun J, Ji J, Zhai L, Tang D, Ji J, He L, Mu Y, Yang H, Yang Z (2021) ChemistrySelect 6:1174

    Article  CAS  Google Scholar 

  21. Sun J, He L, Gao Y, Zhai L, Ji J, Liu Y, Ji J, Ma X, Mu Y, Tang D, Yang H, Iqbal Z, Yang Z (2021) Mendeleev Commun 31:498

    Article  CAS  Google Scholar 

  22. Ji J, Zhai L, Sun J, He L, Ji J, Ma X, Liu Y, Tang D, Mu Y, Gao Y, Yang H, Iqbal Z, Yang Z (2021) J Heterocycl Chem 58:2390

    Article  CAS  Google Scholar 

  23. Fujiu M, Yokoo K, Aoki T, Shibuya S, Sato J, Komano K, Kusano H, Sato S, Ogawa M, Yamawaki K (2020) J Org Chem 85:9650

    Article  CAS  PubMed  Google Scholar 

  24. Garigipati RS (1990) Tetrahedron Lett 31:1969

    Article  CAS  Google Scholar 

  25. Gielen H, Alonso-Alija C, Hendrix M, Niewoehner U, Schauss D (2002) Tetrahedron Lett 43:419

    Article  CAS  Google Scholar 

  26. Dierks A, Tçnjes J, Schmidtmann M, Christoffers J (2019) Chem Eur J 25:14912

    Article  CAS  PubMed  Google Scholar 

  27. Aurelio L, Box JS, Brownlee RTC, Hughes AB, Sleebs MM (2003) J Org Chem 68:2652

    Article  CAS  PubMed  Google Scholar 

  28. Yin J, Weisel M, Ji Y, Liu Z, Liu J, Wallace DJ, Xu F, Sherry BD, Yasuda N (2018) Org Process Res Dev 22:273

    Article  CAS  Google Scholar 

  29. Wikler MA (2009) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, vol 29. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

Download references

Acknowledgements

Authors thank Ministry of Science and Technology, P.R. China for the award of foreign expert program to Dr. Haikang Yang and Dr. Zafar Iqbal. This work was supported by the grant from Science and Technology Department of Ningxia, P.R. China (No. 2018BCG01001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zafar Iqbal or Zhixiang Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2959 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Ji, J., Sun, J. et al. Substituted-amidine derivatives of diazabicyclooctane as prospective β-lactamase inhibitors. Monatsh Chem 153, 301–309 (2022). https://doi.org/10.1007/s00706-021-02888-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02888-3

Keywords

Navigation