Skip to main content
Log in

Hydroalcoholic mixtures: the effect of the solvent on the electronic spectrum of the indicator methyl orange

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In this study, the behavior of the electronic spectrum of the indicator methyl orange in water–methanol, water–ethanol, water–n-propanol, water–iso-propanol and water–t-butanol mixtures was investigated. The spectroscopic parameters were calculated for the binary mixtures with changes in the mole fraction of water in the mixture. Interesting changes in the profile of the indicator methyl orange were observed in these mixtures, showing synergistic and preferential solvation effects. The aim of this study was to evaluate the physical–chemical properties of methyl orange in binary mixtures, considering the use of this compound as a perichromic indicator. Due to changes in the electronic spectrum in hydroalcoholic binary mixtures, methyl orange can act as a colorimetric sensor for the detection of short-chain alcohols in the presence of water.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Taddei M, Mendes T, Farina C (2009) Eur J Phys 31:89

    Article  Google Scholar 

  2. Tonigold K, Groß A (2012) J Comput Chem 33:695

    Article  CAS  Google Scholar 

  3. Fan L, Ge A, Chen XD, Mercadé-Prieto R (2019) Food Hydrocolloids 89:100

    Article  CAS  Google Scholar 

  4. Restrepo J, Glidewell C, Cubillán N, Alvarado Y, Dege N, Morales-Toyo M (2019) J Mol Struct 1177:363

    Article  CAS  Google Scholar 

  5. Nguyen HTH, Huang SR, Liu Y, Liu Y, Korn JA, Tureček F (2019) Int J Mass Spectrom 435:259

    Article  CAS  Google Scholar 

  6. Reichardt C, Welton T (2004) Solvents and solvent effects in organic chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  7. Magalad VT, Gokavi GS, Raju KVSN, Aminabhavi TM (2010) J Membr Sci 354:150

    Article  CAS  Google Scholar 

  8. Shan L, Liu J, Ambuchi JJ, Yu Y, Huang L, Feng Y (2017) Chem Eng J 323:455

    Article  CAS  Google Scholar 

  9. Baird C, Cann M (2011) Química Ambiental. Bookman, Porto Alegre

  10. Sahoo R, Jana R, Seth D (2019) J Mol Liq 275:84

    Article  CAS  Google Scholar 

  11. Li W, Qi S, Wang N, Fei Z, Farajtabar A, Zhao H (2018) J Mol Liq 263:357

    Article  CAS  Google Scholar 

  12. Papadakis R (2016) J Phys Chem B 120:9422

    Article  CAS  Google Scholar 

  13. Roses M, Rafols C, Ortega J, Bosch E (1995) J Chem Soc. Perkin Trans 2:1607

    Article  Google Scholar 

  14. Bosch E, Rived F, Roses M (1996) J Chem Soc. Perkin Trans 2:2177

    Article  Google Scholar 

  15. Reichardt C (1994) Chem Rev 94:2319

    Article  CAS  Google Scholar 

  16. Stock RI, Sandri C, Rezende MC, Machado VG (2018) J Mol Liq 264:327

    Article  CAS  Google Scholar 

  17. Feng L, Musto CJ, Kemling JW, Lim SH, Zhong W, Suslick KS (2010) Anal Chem 82:9433

    Article  CAS  Google Scholar 

  18. Janzen MC, Ponder JB, Bailey DP, Ingison CK, Suslick KS (2006) Anal Chem 78:3591

    Article  CAS  Google Scholar 

  19. Dangui AZ, Santos VMS, Gomes BS, de Castilho TS, Nicolini KP, Nicolini J (2018) Spectrochim Acta, Part A 203:333

    Article  CAS  Google Scholar 

  20. Roberts EL, Burguieres S, Warner IM (1998) Appl Spectrosc 52:1305

    Article  CAS  Google Scholar 

  21. Muler SDS, Dangui AZ, dos Santos CMR, de Oliveira VC, Nicolini KP, Nicolini J (2020) J Mol Liq 300:112295

    Article  CAS  Google Scholar 

  22. Zhang C, Suslick KS (2005) J Am Chem Soc 127:11548

    Article  CAS  Google Scholar 

  23. https://www.ncbinlmnihgov/pccompound. Accessed 21 Nov 2018

  24. Rosés M, Buhvestov U, Ràfols C, Rived F, Bosch E (1997) J Chem Soc. Perkin Trans 2:1341

    Article  Google Scholar 

  25. Cavalli V, da Silva DC, Machado C, Machado VG, Soldi V (2006) J Fluoresc 16:77

    Article  CAS  Google Scholar 

  26. Abarca P, Silva P, Almodovar I, Rezende MC (2014) Quim Nova 37:745

    Article  CAS  Google Scholar 

  27. Reichardt C (2008) Pure Appl Chem 80:1415

    Article  CAS  Google Scholar 

  28. Silverstein RM, Webster FX (1997) Spectrometric identification of organic compounds. John Wiley & Sons, New York

    Google Scholar 

  29. Hayes KL, Lasher EM, Choczynski JM, Crisci RR, Wong CY, Dragonette J, Deschner J, Cardenas AJP (2018) J Mol Struct 1161:194

    Article  CAS  Google Scholar 

  30. Reichardt C (1979) Angew Chem lnt Ed 18:98

    Article  Google Scholar 

  31. Cotton FA, Wilkinson G, Gaus PL (1995) Basic inorganic chemistry. John Wiley & Sons, New York

    Google Scholar 

  32. Kamlet MJ, Abboud JLM, Abraham MH, Taft R (1983) J Org Chem 48:2877

    Article  CAS  Google Scholar 

  33. Schirmer RE (1982) Modern methods of pharmaceutical analysis. CRC Press

    Google Scholar 

  34. Fan J, Shen X, Wang J (1998) Anal Chim Acta 364:275

    Article  CAS  Google Scholar 

  35. Reeves RL, Kaiser RS, Maggio MS, Sylvestre EA, Lawton WH (1973) Can J Chem 51:628

    Article  CAS  Google Scholar 

  36. Karukstis KK, D’Angel ND, Loftus CT (1997) J Phys Chem B 101:1968

    Article  CAS  Google Scholar 

  37. Mancini P, Adam C, Pérez AC, Vottero L (2000) J Phys Org Chem 13:221

    Article  CAS  Google Scholar 

  38. Ali A, Ali M, Malik NA, Uzair S (2014) Spectrochim Acta Part A 121:363

    Article  CAS  Google Scholar 

  39. Silva MAR, da Silva DC, Machado VG, Longhinotti E, Frescura VL (2002) J Phys Chem 106:8820

    Article  CAS  Google Scholar 

  40. Rastrelli F, Saielli G, Bagno A, Wakisaka A (2004) J Phys Chem B 108:3479

    Article  CAS  Google Scholar 

  41. Rauf MA, Hisaindee S (2013) J Mol Liq 1042:45

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Instituto Federal do Paraná (IFPR), Fundação Araucária (FA: PIBIC-FA and PIBIS-FA) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaqueline Nicolini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 342 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sant’Ana, A.C., Dangui, A.Z., Reis, A.V. et al. Hydroalcoholic mixtures: the effect of the solvent on the electronic spectrum of the indicator methyl orange. Monatsh Chem 153, 61–67 (2022). https://doi.org/10.1007/s00706-021-02875-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02875-8

Keywords

Navigation