Skip to main content

Advertisement

Log in

A theoretical survey on the chlorine dioxide (ClO2) and its decomposed species detection by the AlN nanotube in presence of environmental gases

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The adsorption of N2, O2, H2O, hydrogen chloride (HCl), Cl2, hypochlorous acid (HClO), and ClO2 gases was explored onto an AlN nanotube (AlNNT) through density functional theory computations. As N2, O2, H2O, HCl, Cl2, and HClO approach the AlNNT, their adsorption releases 7.1, 12.6, 22.3, 26.5, 30.2, and 41.2 kJ/mol of energy, respectively, indicating a physisorption. In addition, the electronic properties of the nanotube do not change significantly. As chlorine dioxide (ClO2) approaches the AlNNT, its adsorption releases 97.4 kJ/mol of energy. Electronic analysis showed that the AlNNT HOMO–LUMO gap reduces from 4.10 to 2.80 eV (~ − 31.7%) by ClO2 adsorption and the electrical conductivity increases significantly. Therefore, the AlNNT can generate electrical signals when the ClO2 molecules approach, being a hopeful sensor. It was found that this nanotube can selectively detect ClO2 gas among the mentioned molecules. The recovery time for the AlNNT was computed to be 8.0 s for ClO2 desorption, representing a short recovery time.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gharibzadeh F, Vessally E, Edjlali L, Es’haghi M, Mohammadi R (2020) Iran J Chem Chem Eng 39:51–62. https://doi.org/10.30492/ijcce.2020.106867.3568

    Article  Google Scholar 

  2. Vessally E, Babazadeh M, Alipour F, Hosseinian A, Kheirollahi Nezhad PD (2021) Iran J Chem Chem Eng 40:691–703. https://doi.org/10.30492/ijcce.2020.122123.3987

    Article  Google Scholar 

  3. Ahmadi S, Hosseinian A, Kheirollahi Nezhad PD, Monfared A, Vessally E (2019) Iran J Chem Chem Eng 38:1–19. https://doi.org/10.30492/ijcce.2019.33786

    Article  CAS  Google Scholar 

  4. Vessally E, Mohammadi S, Abdoli M, Hosseinian A, Ojaghloo P (2020) Iran J Chem Chem Eng 39:11–19. https://doi.org/10.30492/ijcce.2019.36288

    Article  Google Scholar 

  5. Vessally E, Farajzadeh P, Najafi E (2021) Iran J Chem Chem Eng 40:1001–1011. https://doi.org/10.30492/ijcce.2021.141635.4498

    Article  CAS  Google Scholar 

  6. Ma X, Kexin Z, Yonggang W, Ebadi AG, Toughani M (2021) Iran J Chem Chem Eng. https://doi.org/10.30492/IJCCE.2021.529010.4694

    Article  Google Scholar 

  7. Hashemzadeh B, Edjlali L, Kheirollahi Nezhad PD, Vessally E (2021) Chem Rev Lett. https://doi.org/10.22034/crl.2020.187273.1087

    Article  Google Scholar 

  8. Salehi N, Vessally E, Edjlali L, Alkorta I, Eshaghi M (2000) Chem Rev Lett 3:207–217. https://doi.org/10.22034/crl.2020.230543.1056

    Article  CAS  Google Scholar 

  9. Sreerama L, Vessally E, Behmagham F (2020) J Chem Lett 1:9–18. https://doi.org/10.22034/jchemlett.2020.106645

    Article  Google Scholar 

  10. Kumar S (2008) ALD growth of a novel mixed-phase barrier for seedless copper electroplating applications. State University of New York, Albany

    Book  Google Scholar 

  11. Majedi S, Sreerama L, Vessally E, Behmagham F (2020) J Chem Lett 1:25–31. https://doi.org/10.22034/jchemlett.2020.107760

    Article  Google Scholar 

  12. Moradi O, Zare K, Monajjemi M, Yari M, Aghaie H (2010) Fullerenes Nanotub Carbon Nanostruct 18:285

    Article  CAS  Google Scholar 

  13. Moradi O, Zare K (2011) Fullerenes Nanotub Carbon Nanostruct 19:628

    Article  CAS  Google Scholar 

  14. Ahmadi A, Kamfiroozi M, Beheshtian J, Hadipour NL (2011) Struct Chem 22:1261–1265

    Article  CAS  Google Scholar 

  15. Baei MT, Peyghan AA, Bagheri Z (2012) Chin Chem Lett 23:965–968

    Article  Google Scholar 

  16. Baei MT, Peyghan AA, Bagheri, Z (2013) Struct Chem 24:1099–1103

    Google Scholar 

  17. Beheshtian J, Peyghan AA, Bagheri Z, Tabar MB (2013) Struct Chem 25:1–7

    Article  Google Scholar 

  18. Moradi M, Peyghan AA, Bagheri Z, Kamfiroozi M (2012) J Mol Model 18:3535–3540

    Article  CAS  Google Scholar 

  19. Wang Z, Lei Q, Wang Z, Yuan H, Cao L, Qin N, Liu J (2020) Chem Eng J 395:125180. Lausanne, Switzerland. https://doi.org/10.1016/j.cej.2020.125180

    Google Scholar 

  20. Peyghan AA, Baei MT, Moghimi M, Hashemian S (2012) Comput ‎Theor Chem 997:63–69

    CAS  Google Scholar 

  21. Koao LF, Hone FG, Dejene FB (2020) J Nanostruct Chem 10:1

    Article  CAS  Google Scholar 

  22. Aragaw BA (2020) J Nanostruct Chem 10:9

    Article  CAS  Google Scholar 

  23. Malinga NN, Jarvis ALL (2020) J Nanostruct Chem 10:55

    Article  CAS  Google Scholar 

  24. Peyghan AA, Noei M (2014) Physica B: Condensed Matter 432:105–110

    Article  CAS  Google Scholar 

  25. Peyghan AA, Soleymanabadi H (2015) Current Science 108:1910–1914

    CAS  Google Scholar 

  26. Robati D, Bagheriyan S, Rajabi M, Moradi O, Peyghan AA (2016) Physica E 83:1–6

    Article  CAS  Google Scholar 

  27. Zhang X, Tang Y, Zhang F, Lee C (2016) Adv Energ Mater 6(11):1502588. https://doi.org/10.1002/aenm.201502588

    Article  CAS  Google Scholar 

  28. Ji B, Zhang F, Song X, Tang Y (2017) Adv Mater (Weinheim) 29(19):1700519. https://doi.org/10.1002/adma.201700519

    Article  CAS  Google Scholar 

  29. Beheshtian J, Baei MT, Peyghan AA, Bagheri Z (2013) J Mol Model 19:943

    Article  CAS  Google Scholar 

  30. He C, Wang J, Fu L, Zhao C, Huo J (2021) Chin Chem Lett. https://doi.org/10.1016/j.cclet.2021.09.009

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jiang L, Wang Y, Wang X, Ning F, Wen S, Zhou Y, Zhou F (2021) Appl Sci Manuf 147:106461. https://doi.org/10.1016/j.compositesa.2021.106461

    Article  CAS  Google Scholar 

  32. Hu L, Huang X, Zhang S, Chen X, Dong X, Jin H, Jiang Z (2021) Mater Electron 32(19):23728. https://doi.org/10.1007/s10854-021-06464-7

    Article  CAS  Google Scholar 

  33. Li Y, Macdonald DD, Yang J, Qiu J, Wang S (2020) Corros Sci 163:108280. https://doi.org/10.1016/j.corsci.2019.108280

    Article  CAS  Google Scholar 

  34. Xie Y, Meng X, Mao D, Qin Z, Wan L, Huang Y (2021) ACS Appl Mater Interfaces 13(27):32161–32174. https://doi.org/10.1021/acsami.1c07148

    Article  CAS  PubMed  Google Scholar 

  35. Rezaei A, Ghiasi R, Marjani A (2020) J Nanostruct Chem 10:179

    Article  Google Scholar 

  36. Najafi F (2020) J Nanostruct Chem 10:227

    Article  CAS  Google Scholar 

  37. Foroutan M, Fatemi SJ, Fatemi SM (2020) J Nanostruct Chem 10:265

    Article  CAS  Google Scholar 

  38. Rodrigues BS, Almeida VA, Claudino CH, Ponce-de-Leon C, Bavykin DV, Souza JS (2020) J Nanostruct Chem 10:363

    Article  CAS  Google Scholar 

  39. Baei MT (2012) Monatsh Chem 143:545

    Article  CAS  Google Scholar 

  40. Mirzaei M, Mirzaei M (2011) Monatsh Chem 142:115

    Article  CAS  Google Scholar 

  41. Noei M, Salari AA, Ahmadaghaei N, Bagheri Z, Peyghan AA (2013) C R Chim 16:985

    Article  CAS  Google Scholar 

  42. Samadizadeh M, Rastegar SF, Peyghan AA (2015) Phys E 69:75

    Article  CAS  Google Scholar 

  43. Mohammadi R, Hosseinian A, Khosroshahi ES, Edjlali L, Vessally E (2018) Phys E 98:53

    Article  CAS  Google Scholar 

  44. Baei MT, Peyghan AA, Bagheri Z (2013) Superlattices Microstruct 53:9

    Article  CAS  Google Scholar 

  45. Hu M, Wang Y, Yan Z, Zhao G, Zhao Y, Xia L, Zhuang X (2021) Mater Energ Sustain 9(24):14093–14100. https://doi.org/10.1039/D1TA01505B

    Article  CAS  Google Scholar 

  46. Ahmadi A, Hadipour NL, Kamifiroozi M, Bagheri Z (2012) Sens Actuators B 161:1025

    Article  CAS  Google Scholar 

  47. Ahmadi Peyghan A, Omidvar A, Hadipour NL, Bagheri Z, Kamfiroozi M (2012) Phys E 44:1357

    Article  Google Scholar 

  48. Fu Y, Chen H, Guo R, Huang Y, Toroghinejad MR (2021) J Alloy Compd 888:161507. https://doi.org/10.1016/j.jallcom.2021.161507

    Article  CAS  Google Scholar 

  49. Yang M, Kong Q, Feng W, Yao W, Wang Q (2021) Appl Surf Sci 569:150984. https://doi.org/10.1016/j.apsusc.2021.150984

    Article  CAS  Google Scholar 

  50. Zhang C, Liu X, Liu C, Luo X (2021) J Kansas Entomol Soc. https://doi.org/10.2317/0022-8567-93.4.267

    Article  Google Scholar 

  51. Yan Y, Feng L, Shi M, Cui C, Liu Y (2020) Food Chem 306:125589. https://doi.org/10.1016/j.foodchem.2019.125589

    Article  CAS  PubMed  Google Scholar 

  52. Shi M, Wang F, Lan P, Zhang Y, Zhang M, Yan Y, Liu Y (2021) Food Sci Technol 138:110677. https://doi.org/10.1016/j.lwt.2020.110677

    Article  CAS  Google Scholar 

  53. Baei MT, Peyghan AA, Bagheri Z, Tabar MB (2012) Phys Lett A 377:107

    Article  CAS  Google Scholar 

  54. Priya DD, Khan MMR, Roopan SM (2020) J Nanostruct Chem 10:289

    Article  CAS  Google Scholar 

  55. Rita A, Sivakumar A, Sahaya Jude-Dhas S, Martin-Britto-Dhas SA (2020) J Nanostruct Chem 10:309

    Article  Google Scholar 

  56. González-Ballesteros N, Rodríguez-Argüelles MC, Lastra-Valdor M, González-Mediero G, Rey-Cao S, Grimaldi M, Cavazza A, Bigi F (2020) J Nanostruct Chem 10:317

    Article  Google Scholar 

  57. Kozlovskiy A, Zdorovets M, Kenzhina I, Berguzinov A, Tishkevich D, Zubar T, Trukhanov A (2020) J Nanostruct Chem 10:331

    Article  CAS  Google Scholar 

  58. Rehman Y, Copet C, Morlando A, Huang XF, Konstantinov K (2020) J Nanostruct Chem 10:347

    Article  CAS  Google Scholar 

  59. Moradi O, Zare K (2013) Fullerenes Nanotub Carbon Nanostruct 21:449

    Article  CAS  Google Scholar 

  60. Adhikari K, Ray A (2011) Phys Lett A 375:1817

    Article  CAS  Google Scholar 

  61. Zhao G, Li X, Huang M, Zhen Z, Zhong Y, Chen Q, Zhao X, He Y, Hu R, Yang T (2017) Chem Soc Rev 46:4417

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Reza Poor Heravi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, Z., Fosshat, S., Alizadeh, S.M.S. et al. A theoretical survey on the chlorine dioxide (ClO2) and its decomposed species detection by the AlN nanotube in presence of environmental gases. Monatsh Chem 153, 21–29 (2022). https://doi.org/10.1007/s00706-021-02873-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02873-w

Keywords

Navigation