Skip to main content
Log in

Highly sensitive direct simultaneous determination of zinc(II), cadmium(II), lead(II), and copper(II) based on in-situ-bismuth and mercury thin-film plated screen-printed carbon electrode

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Thin-film disposable screen-printed electrodes modified in situ with bismuth and mercury coatings to enhance the simultaneous sensitivities and the limits of detection of cadmium(II), lead(II), copper(II), and zinc(II) were prepared using anodic stripping voltammetry. Whether the films coated were properly adhered to the surface were checked by energy-dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. The optimum conditions for the best performance of the sensor were investigated. The modification with Bi/Hg film electrode exhibited good analytical performance, with excellent repeatability (RSD < 4.0%), reproducibility (RSD < 4.0%), and reasonable interferences by various inorganic species. Bi/HgSPC electrode also offers low detection limits for Zn(II), Cd(II), Pb(II), and Cu(II), i.e., 0.97 ppb, 0.16 ppb, 0.082 ppb, and 0.64 ppb, respectively. The developed method was applied to a certified reference water sample and a surface water sample taken from the environment by standard addition method and the results are satisfactory. Analytical results obtained with the sensor are comparable to those obtained by the inductively coupled plasma mass spectrometry.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012). In: Luch A (ed) Molecular, clinical and environmental toxicology. Springer, Basel

    Google Scholar 

  2. Mokarram M, Saber A, Sheykhi V (2020) J Clean Prod 277:123380

    Article  CAS  Google Scholar 

  3. Ali H, Khan E, Ilahi I (2019) J Chem 2019:6730305

    Google Scholar 

  4. Jović M, Onjia A, Stanković S (2012) Environ Chem Lett 10:69

    Article  Google Scholar 

  5. Tareen AK, Sultan IN, Parakulsuksatid P, Shafi M, Khan A, Khan MW, Hussain S (2014) Int J Curr Microbiol App Sci 3:2998

    Google Scholar 

  6. Dahlquist RL, Knoll JW (1978) Appl Spectrosc 32:1

    Article  CAS  Google Scholar 

  7. Dede ÖT (2016) Anal Methods 8:50874

    Google Scholar 

  8. Santoyo E, Santoyo-Gutiérrez S, Verma SP (2000) J Chromatogr A 884:229

    Article  CAS  PubMed  Google Scholar 

  9. Bansod B, Kumar T, Thakur R, Rana S, Singh I (2017) Biosens Bioelectron 94:443

    Article  CAS  PubMed  Google Scholar 

  10. Erden S, Durmus Z, Kılıç E (2011) Electroanalysis 23:1967

    Article  CAS  Google Scholar 

  11. Pudza MY, Abidin ZZ, Abdul-Rashid S, Yasin FM, Noor ASM, Abdullah J (2020) Environ Sci Pollut Res 1

  12. Rajawat DS, Kardam A, Srivastava S, Satsangee SP (2013) Environ Sci Pollut Res 20:3068

    Article  CAS  Google Scholar 

  13. Wang J (2006) Analytical electrochemistry, 3rd edn. Wiley, Hoboken

    Book  Google Scholar 

  14. Sonthalia P, McGaw E, Show Y, Swain GM (2004) Anal Chim Acta 522:35

    Article  CAS  Google Scholar 

  15. Rehacek V, Hotovy I, Vojs M, Mika F (2008) Microsyst Technol 14:491

    Article  CAS  Google Scholar 

  16. Ping J, Wang Y, Wu J, Ying Y (2014) Food Chem 151:65

    Article  CAS  PubMed  Google Scholar 

  17. Kokkinos C, Economou A, Giokas D (2018) Sens Actuators B 260:223

    Article  CAS  Google Scholar 

  18. Economou A (2005) TrAC Trends Anal Chem 24:334

    Article  CAS  Google Scholar 

  19. Zhang D, Xiang Q (2021) Microchem J 166:106265

    Article  CAS  Google Scholar 

  20. Hou J, Fan Y, Ma X, Dong X, Yao S (2021) RSC Adv 11:17240

    Article  CAS  Google Scholar 

  21. Cao L, Jia J, Wang Z (2008) Electrochim Acta 53:2177

    Article  CAS  Google Scholar 

  22. Hočevar SB, Švancara I, Vytřas K, Ogorevc B (2005) Electrochim Acta 51:706

    Article  Google Scholar 

  23. Baldrianova L, Svancara I, Vlcek M, Economou A, Sotiropoulos S (2006) Electrochim Acta 52:481

    Article  CAS  Google Scholar 

  24. Ouyang R, Zhu Z, Tatum CE, Chambers JQ, Xue ZL (2011) J Electroanal Chem 656:78

    Article  CAS  Google Scholar 

  25. Królicka A, Bobrowski A (2004) Electrochem Commun 6:99

    Article  Google Scholar 

  26. Lara J, Torres JF, Beltrán OG, Nagles E, Hurtado J (2017) Int J Electrochem Sci 12:6920

    Article  CAS  Google Scholar 

  27. Wang J, Lu J, Hocevar SB, Ogorevc B (2001) Electroanalysis 13:13

    Article  Google Scholar 

  28. Królicka A, Pauliukait R, Svancara I, Metelka R, Bobrowski A, Norkus E, Kalcher K, Vytřas K (2002) Electrochem Commun 4:193

    Article  Google Scholar 

  29. Wang J (2005) Electroanalysis 17:1341

    Article  CAS  Google Scholar 

  30. Renedo OD, Alonso-Lomillo MA, Martínez MA (2007) Talanta 73:202

    Article  CAS  PubMed  Google Scholar 

  31. Liu X, Yao Y, Ying Y, Ping J (2019) TrAC Trends Anal Chem 115:187

    Article  CAS  Google Scholar 

  32. Erden S, Yazan Z (2018) Rev Roum Chim 63:977

    Google Scholar 

  33. Kaedi F, Yavari Z, Asmaei M, Abbasian AR, Noroozifar M (2019) New J Chem 43:3884

    Article  CAS  Google Scholar 

  34. Economou A, Fielden PR (2003) Analyst 128:205

    CAS  PubMed  Google Scholar 

  35. Xu X, Duan G, Li Y, Liu G, Wang J, Zhang H, Dai Z, Cai W (2014) ACS Appl Mater Interfaces 6:65

    Article  CAS  PubMed  Google Scholar 

  36. Wei Y, Gao C, Meng FL, Li HH, Wang L, Liu JH, Huang XJ (2012) J Phys Chem C 116:1034

    Article  CAS  Google Scholar 

  37. Lu Z, Zhang J, Dai W, Lin X, Ye J, Ye J (2017) Microchim Acta 184:4731

    Article  CAS  Google Scholar 

  38. Thanh NM, Van Hop N, Luyen ND, Phong NH, Tam Toan TT (2019) Adv Mater Sci Eng 2019:1826148

    Article  Google Scholar 

  39. Wu Y, Li NB, Luo HQ (2008) Sens Actuators B 133:677

    Article  CAS  Google Scholar 

  40. Xiong CH, Luo HQ, Li NB (2011) J Electroanal Chem 651:19

    Article  CAS  Google Scholar 

  41. Xu H, Zeng L, Huang D, Xian Y, Jin L (2008) Food Chem 109:834

    Article  CAS  PubMed  Google Scholar 

  42. Hwang GH, Han WK, Hong SJ, Park JS, Kang SG (2009) Talanta 77:14326

    Article  Google Scholar 

  43. Rico MAG, Olivares-Marín M, Gil EP (2008) Electroanalysis 20:2608

    Article  CAS  Google Scholar 

  44. Hwang GH, Han WK, Park JS, Kang SG (2008) Talanta 76:301

    Article  CAS  PubMed  Google Scholar 

  45. Injang U, Noyrod P, Siangproh W, Dungchai W, Motomizu S, Chailapakul O (2010) Anal Chim Acta 668:54

    Article  CAS  PubMed  Google Scholar 

  46. Song W, Zhang L, Shi L, Li DW, Li Y, Long YT (2010) Microchim Acta 169:321

    Article  CAS  Google Scholar 

  47. Li M, Li DW, Li YT, Xu DK, Long YT (2011) Anal Chim Acta 701:157

    Article  CAS  PubMed  Google Scholar 

  48. Noh MFM, Tothill IE (2011) Sains Malays 40:1153

    CAS  Google Scholar 

  49. Lezi N, Economou A, Dimovasilis PA, Trikalitis PN, Prodromidis MI (2012) Anal Chim Acta 728:1

    Article  CAS  PubMed  Google Scholar 

  50. Chen C, Niu X, Chai Y, Zhao H, Lan M (2013) Sens Actuators B 178:339

    Article  CAS  Google Scholar 

  51. Keawkim K, Chuanuwatanakul S, Chailapakul O, Motomizu S (2013) Food Control 31:14

    Article  CAS  Google Scholar 

  52. Chaiyo S, Mehmeti E, Žagar K, Siangproh W, Chailapakul O, Kalcher K (2016) Anal Chim Acta 918:26

    Article  CAS  PubMed  Google Scholar 

  53. Palisoc S, Sow VA, Natividad M (2019) Anal Methods 11:1591

    Article  CAS  Google Scholar 

  54. Hwang JH, Pathak P, Wang X, Rodriguez KL, Cho HJ, Lee WH (2019) Micromachines 10:511

    Article  PubMed Central  Google Scholar 

  55. Yao Y, Wu H, Ping J (2019) Food Chem 274:8

    Article  CAS  PubMed  Google Scholar 

  56. Frutos-Puerto S, Miró C, Pinilla-Gil E (2019) Sensors 19:279

    Article  PubMed Central  Google Scholar 

  57. Sánchez-Calvo A, Blanco-López MC, Costa-García A (2020) Biosensors 10:52

    Article  PubMed Central  Google Scholar 

  58. Li H, Zhao J, Zhao S, Cui G (2021) Microchem J 168:106390

    Article  CAS  Google Scholar 

  59. Locatelli C (2006) Anal Chim Acta 557:70

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to the Ankara University Research Fund (Project Nos: 20L0430001 and 20B0430003) for the financial support. We also wish to thank the Turkey General Directorate of State Hydraulic Works for supplying the surface water sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zehra Yazan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 114 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yıldız, C., Eskiköy Bayraktepe, D. & Yazan, Z. Highly sensitive direct simultaneous determination of zinc(II), cadmium(II), lead(II), and copper(II) based on in-situ-bismuth and mercury thin-film plated screen-printed carbon electrode. Monatsh Chem 152, 1527–1537 (2021). https://doi.org/10.1007/s00706-021-02865-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02865-w

Keywords

Navigation