Skip to main content
Log in

Biophysical and thermodynamic studies of sulfur and selenium analogues of threonine in gas and solution phases

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The essential biological role of seleno amino acids has been approved in many theoretical and experimental studies. These seleno amino acids may deliver selenium to cells to prevent cancer or resist infections. In this research, d-threonine and its oxygen, sulfur, and selenium analogues were analysed using the second order Møller–Plesset theory (MP2) and density functional theory (DFT). The neutral and zwitterion forms were investigated to predict the most stable forms in the gas and aqueous phases. The polarizable continuum models within the self-consistent reaction field method (SCRF) were applied to simulate the solvent effect. Calculations confirmed that the zwitterion form of all analogues is the most stable form of threonine in water. In the gas and solution phases, the selenium analogue had the lowest energy, followed by the sulfur analogue, and then by the oxygen analogue with the highest energy. Thermodynamic parameters and molecular orbital analysis are listed and discussed in this study.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ding Y, Krogh-Jespersen K (1992) Chem Phys Lett 199:261

    Article  CAS  Google Scholar 

  2. Kerr K, Ashmore JP, Koetzle TF (1975) Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 31:2022

    Article  Google Scholar 

  3. Howard L, Braswell D, Aselage J (1996) J Food Sci 61:327

    Article  CAS  Google Scholar 

  4. Metges CC, Petzke KJ, Young VR (1999) Ann Nutr Metab 43:267

    Article  CAS  Google Scholar 

  5. Tarakeshwar P, Manogaran S (1994) J Mol Struct THEOCHEM 305:205

    Article  Google Scholar 

  6. Gronert S, O’Hair RA (1995) J Am Chem Soc 117:2071

    Article  CAS  Google Scholar 

  7. Tarakeshwar P, Manogaran S (1995) Spectrochim Acta A Mol Biomol Spectrosc 51:925

    Article  Google Scholar 

  8. Fernandez-Ramos A, Cabaleiro-Lago E, Hermida-Ramon J, Martınez-Núnez E, Pena-Gallego A (2000) J Mol Struct THEOCHEM 98:191

    Article  Google Scholar 

  9. Ramırez F, Tunón I, Silla E (2004) Chem Phys 303:85

    Article  CAS  Google Scholar 

  10. Ji H-F, Shen L, Zhang H-Y (2005) J Mol Struct THEOCHEM 756:109

    Article  CAS  Google Scholar 

  11. Jv H (2001) Glycobiology 11:25R

    Article  Google Scholar 

  12. Pisarewicz K, Mora D, Pflueger FC, Fields GB, Marí F (2005) J Am Chem Soc 127:6207

    Article  CAS  Google Scholar 

  13. Chen J, Berry MJ (2003) J Neurochem 86:1

    Article  CAS  Google Scholar 

  14. Soriano-Garcia M (2004) Curr Med Chem 11:1657

    Article  CAS  Google Scholar 

  15. Suzuki KT (2005) J Health Sci 51:107

    Article  CAS  Google Scholar 

  16. Hill KE, Zhou J, McMahan WJ, Motley AK, Atkins JF, Gesteland RF, Burk RF (2003) J Biol Chem 278:13640

    Article  CAS  Google Scholar 

  17. Schweizer U, Schomburg L, Savaskan NE (2004) J Nutr 134:707

    Article  CAS  Google Scholar 

  18. Schrauzer GN (2000) J Nutr 130:1653

    Article  CAS  Google Scholar 

  19. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  20. Becke AD (1996) J Chem Phys 104:1040

    Article  CAS  Google Scholar 

  21. Møller C, Plesset MS (1934) Phys Rev 46:618

    Article  Google Scholar 

  22. Mennucci B, Cances E, Tomasi J (1997) J Phys Chem B 101:10506

    Article  CAS  Google Scholar 

  23. Mennucci B, Tomasi J (1997) J Chem Phys 106:5151

    Article  CAS  Google Scholar 

  24. Tomasi J, Mennucci B, Cances E (1999) J Mol Struct THEOCHEM 464:211

    Article  CAS  Google Scholar 

  25. Garcia-Ratés M, Neese F (2019) J Comput Chem 40:1816

    Article  CAS  Google Scholar 

  26. Izato Y-I, Matsugi A, Koshi M, Miyake A (2019) Phys Chem Chem Phys 21:18920

    Article  CAS  Google Scholar 

  27. Nishimoto Y (2019) J Phys Chem A 123:5649

    Article  CAS  Google Scholar 

  28. de Castilho LL, dos Santos FEB, Baptista L (2020) Atmos Environ 224:117363

    Article  CAS  Google Scholar 

  29. Dennington R II, Keith T, Millam J, Eppinnett K, Hovell W, Gilliland R (2003) GaussView 5.0. Semichem, Inc., Shawnee Mission, KS

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edrees M. Harki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 49 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harki, E.M. Biophysical and thermodynamic studies of sulfur and selenium analogues of threonine in gas and solution phases. Monatsh Chem 152, 1307–1313 (2021). https://doi.org/10.1007/s00706-021-02854-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02854-z

Keywords

Navigation