Skip to main content

Advertisement

Log in

Direct four-component assembling of arylaldehydes, dimethylbarbituric acid, 4-hydroxycoumarine, and cyclic amines into complex scaffolds with three different heterocyclic rings

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The new type of four-component tandem Knoevenagel–Michael reaction was found: assembling arylaldehydes, N,N′-dimethylbarbituric acid, 4-hydroxycoumarine, and morpholine or piperidine has been successfully carried out in alcohols, other organic solvents and water at ambient temperature without catalyst or any other additives and resulted in the selective formation of the new substituted unsymmetrical scaffold with three different heterocyclic rings in 75–98% yields. The crystal structure of morpholin-4-ium 5-[(4-hydroxy-2-oxo-2H-chromen-3-yl)(phenyl)methyl]-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate and morpholin-4-ium 5-[(4-hydroxy-2-oxo-2H-chromen-3-yl)(4-nitrophenyl)methyl]-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate was confirmed by X-ray diffraction study. Thus, this new four-component tandem Knoevenagel–Michael strategy is a selective, facile, and efficient way to unsymmetrical scaffolds with three different pharmacology active heterocyclic rings. The optimized reaction conditions and a mechanistic rationale for this multicomponent assembling are presented.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tietze LF (1996) Chem Rev 96:115

    Article  PubMed  CAS  Google Scholar 

  2. Zhu J, Bienayme H (eds) (2005) Multicomponent reactions. Wiley-VCH, Weinheim

    Google Scholar 

  3. Zhi S, Ma X, Zhang W (2019) Bioorg Med Chem 17:7632

    Article  CAS  Google Scholar 

  4. Jadhav SN, Patil SP, Sahoo DP, Rath D, Parida K, Rode CV (2020) Catal Lett 150:2331

    Article  CAS  Google Scholar 

  5. Elinson MN, Ryzhkova YE, Ryzhkov FV (2021) Russ Chem Rev 90:94

    Article  CAS  Google Scholar 

  6. Schneider P, Schneider G (2017) Angew Chem Int Ed 56:7971

    Article  CAS  Google Scholar 

  7. Yet L (2018) Privileged structures in drug discovery: medicinal chemistry and synthesis. John Wiley and Sons, London

    Book  Google Scholar 

  8. Xu H, Huang R-L, Shu Z, Hong R, Zhang Z (2021) Bioorg Med Chem 19:4978

    Article  CAS  Google Scholar 

  9. Brunton LL, Lazo JS, Parker KL, Buxton I, Blumenthal D (2006) Goodman and Gilman’s the pharmacological basis of therapeutics, 11th edn. The McGraw-Hill Companies Inc, New York

    Google Scholar 

  10. Johns MW (1975) Drugs 9:448

    Article  PubMed  CAS  Google Scholar 

  11. Sriram D, Bal TR, Yogeeswari P (2005) J Pharm Pharm Sci 8:565

    PubMed  CAS  Google Scholar 

  12. Lyons KE, Pahwa R (2008) CNS Drugs 22:1037

    Article  PubMed  CAS  Google Scholar 

  13. Uhlmann C, Froscher W (2009) CNS Neurosci Ther 15:24

    Article  PubMed  PubMed Central  Google Scholar 

  14. Grams F, Brandstetter H, D’Alo S, Geppert D, Krell HW, Leinert H, Livi V, Menta E, Oliva A, Zimmermann G (2001) Biol Chem 382:1277

    Article  PubMed  CAS  Google Scholar 

  15. Liu M, Cao D, Russell R, Handschumacher RE, Pizzorno G (1998) Cancer Res 58:5418

    PubMed  CAS  Google Scholar 

  16. Goekjian PG, Jirousek MR (1999) Curr Med Chem 6:877

    PubMed  CAS  Google Scholar 

  17. Gruber P, Rechfeld F, Kirchmair J, Hauser N, Boehler M, Garczarczyk D, Langer T, Hofmann J (2011) J Biochem 149:331

    Article  PubMed  CAS  Google Scholar 

  18. Brahmachari G, Mandal M, Karmakar I, Nurjamal K, Mandal B (2019) ACS Sustain Chem Eng 7:6369

    Article  CAS  Google Scholar 

  19. Pingaew R, Saekee A, Mandi P, Nantasenamat C, Prachayasittikul S, Ruchirawat S, Prachayasittiku V (2014) Eur J Med Chem 85:65

    Article  PubMed  CAS  Google Scholar 

  20. Hildebrandt EF, Suttie JW (1982) Biochemistry 21:2406

    Article  PubMed  CAS  Google Scholar 

  21. Kayser O, Kolodziej H (1997) Planta Med 63:508

    Article  PubMed  CAS  Google Scholar 

  22. Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas KE, Nicolaides DN (2004) Curr Pharm Des 10:3813

    Article  PubMed  CAS  Google Scholar 

  23. Huang XY, Shan ZJ, Zhai HL, Su L, Zhang XY (2011) Chem Biol Drug Des 78:651

    Article  PubMed  CAS  Google Scholar 

  24. Kontogiorgis CA, Hadjipavlou-Litina DJJ (2005) Med Chem 48:6400

    Article  CAS  Google Scholar 

  25. Sashidhara KV, Kumar A, Kumar M, Srivastava A, Puri A (2010) Bioorg Med Chem Lett 20:6504

    Article  PubMed  CAS  Google Scholar 

  26. Kurt BZ, Gazioglu I, Sonmez F, Kucukislamoglu M (2015) Bioorg Chem 59:80

    Article  PubMed  CAS  Google Scholar 

  27. Barros TAA, Freitas LAR, Filho JMB, Nunes XP, Giulietti AM, Souza GE, Santo RR, Soares MB, Villarreal CFJ (2010) Pharm Pharmacol 62:205

    Article  CAS  Google Scholar 

  28. Sashidhara KV, Kumar A, Chatterjee M, Rao KB, Singh S, Verma AK, Palit G (2011) Bioorg Med Chem Lett 21:1937

    Article  PubMed  CAS  Google Scholar 

  29. Luchini AC, Rodrigues-Orsi P, Cestari SH, Seito LN, Witaicenis A, Pellizzon CH, Stasi LCD (2008) Biol Pharm Bull 31:1343

    Article  PubMed  CAS  Google Scholar 

  30. Velasco-Velázquez MA, Agramonte-Hevia J, Barrera D, Jiménez-Orozco A, García-Mondragón MJ, Mendoza-Patiño N, Landa A, Mandoki J (2003) Cancer Lett 198:179

    Article  PubMed  CAS  Google Scholar 

  31. Kirkiacharian BS, Clercq E, Kurkjian R, Pannecouque CJ (2008) Pharm Chem 42:265

    Article  CAS  Google Scholar 

  32. Kumari A, Singh RK (2020) Biorg Chem 96:103578

    Article  CAS  Google Scholar 

  33. Kourounakis AP, Xanthopoulos D, Tzara A (2020) Med Res Rev 40:709

    Article  PubMed  CAS  Google Scholar 

  34. Cotten JF, Keshavaprasad B, Laster MJ, Eger EI, Yost CS (2006) Anesth Analg 102:779

    Article  PubMed  CAS  Google Scholar 

  35. Stoops WW, Strickland JC, Alcorn JL, Hays LR, Rayapati AO, Lile JA, Rush CR (2019) Psychopharmacology 236:2569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Bonnet U (2003) CNS Drug Rev 9:97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Naidu C, Kulkarni J (2019) Aust N Z J Psychiatry 53:1227

    Article  PubMed  Google Scholar 

  38. Walsh SL, Heilig M, Nuzzo PA, Henderson P, Lofwall MR (2013) Addict Biol 18:332

    Article  PubMed  CAS  Google Scholar 

  39. Patel MSN, Ahmed MH, Saqib M, Shaikh SN (2019) J Drug Deliv Ther 9:542

    Article  CAS  Google Scholar 

  40. Pesyan NN, Rashidnejad H, Esmaeili MA, Safari E, Tunç T, Alilou M, Safavi-Sohi R, Şahin E (2020) J Chin Chem Soc 67:1679

    Article  CAS  Google Scholar 

  41. Katsamakas S, Papadopoulos AG, Kouskoura MG, Markopoulou CK, Hadjipavlou-Litina D (2019) Future Med Chem 11:2063

    Article  PubMed  CAS  Google Scholar 

  42. Barakat A, Ali M, Al Majid AM, Yousuf S, Choudhary MI (2016) Diethylammonium salts of phenyl-substituted thiobarbituric acid as anti-diabetic agents. US Patent 9527820, Dec 27, 2016; Chem Abstr 166:112656

  43. Barakat A, Al-Majid AM, Al-Najjar HJ, Mabkhot YN, Javaid S, Yousuf S, Choudhary MI (2014) Eur J Med Chem 84:146

    Article  PubMed  CAS  Google Scholar 

  44. Wender PA (2014) Nat Prod Rep 31:433

    Article  PubMed  CAS  Google Scholar 

  45. Zhang W, Yi W-B (2019) Pot, atom and step economy (PASE) synthesis. Springer, Berlin

    Book  Google Scholar 

  46. Elinson MN, Vereshchagin AN, Anisina YE, Egorov MP (2020) Polycycl Aromat Compd 40:108

    Article  CAS  Google Scholar 

  47. Elinson MN, Nasybullin RF, Ryzhkov FV, Egorov MP (2014) C R Chim 17:437

    Article  CAS  Google Scholar 

  48. Vereshchagin AN, Elinson MN, Dorofeeva EO, Stepanov NO, Zaimovskaya TA, Nikishin GI (2013) Tetrahedron 64:9766

    Article  CAS  Google Scholar 

  49. Elinson MN, Medvedev MG, Ilovaisky AI, Merkulova VM, Zaimovskaya TA, Nikishin GI (2013) Mendeleev Commun 23:94

    Article  CAS  Google Scholar 

  50. Vereshchagin AN, Elinson MN, Zaimovskaya TA, Nikishin GI (2008) Tetrahedron 69:1945

    Article  CAS  Google Scholar 

  51. Irani S, Maghsoodlou MT, Hazeri N (2017) J Iran Chem Soc 14:1189

    Article  CAS  Google Scholar 

  52. Elinson MN, Vereshchagin AN, Feducovich SK, Zaimovskaya TA, Starikova ZA, Belyakov PA, Nikishin GI (2007) Tetrahedron Lett 48:6614

    Article  CAS  Google Scholar 

  53. Elinson MN, Vereshchagin AN, Stepanov NO, Belyakov PA, Nikishin GI (2010) Tetrahedron Lett 51:6998

    Google Scholar 

  54. Vereshchagin AN, Elinson MN, Nasybullin RF, Bobrovsky SI, Bushmarinov IS, Egorov MP (2015) Helv Chim Acta 98:1104

    Article  CAS  Google Scholar 

  55. Gaich T, Baran PS (2010) J Org Chem 75:4657

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Crystal structure determination for compound 2a was performed in the Department of Structural Studies of Zelinsky Institute of Organic Chemistry, Moscow. Crystal structure determination for compounds 2h and 4e were performed with the financial support from Ministry of Science and Higher Education of the Russian Federation using the equipment of Center for molecular composition studies of INEOS RAS and are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michail N. Elinson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2418 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elinson, M.N., Vereshchagin, A.N., Ryzhkova, Y.E. et al. Direct four-component assembling of arylaldehydes, dimethylbarbituric acid, 4-hydroxycoumarine, and cyclic amines into complex scaffolds with three different heterocyclic rings. Monatsh Chem 152, 1327–1336 (2021). https://doi.org/10.1007/s00706-021-02849-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02849-w

Keywords

Navigation