Skip to main content
Log in

Theoretical exploration of the LiF-decorated BN cages as hydrogen storage materials

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Density functional theory calculations were applied to investigate LiF decoration of B12N12 cage in terms of the structures and stabilities. Then, the resulted LiF-decorated B12N12 cages were explored to find their capability as hydrogen storage. The DFT results showed that decoration of BN cages is independent of the previously decorated BN bonds. LiF decoration of BN bonds leads to charge redistribution so that charges of the atoms nearest to the decorated bonds change and charges of the other ones remain rather unchanged. Hydrogen prefers to bind to the B atoms that are nearest to the decorated Li. It was revealed that H atoms bind more strongly to B atoms of LiF-decorated B12N12 cages in comparison to pristine B12N12 cage. Two types of hydrogen bonding were formed in B12N12Li4F4 and B12N12Li6F6, binding of hydrogens in a quasi-molecular form to the decorated Li atoms, and also binding of hydrogen in atomic to B atoms. Calculated binding energies showed that binding of hydrogen to the models is an intermediate between physical and chemical adsorption, indicating that the LiF-decorated B12N12 cages are suitable as hydrogen storage materials.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schlapbach L, Züttel A (2001) Nature (London) 414:353

    Article  CAS  Google Scholar 

  2. Steele BCH, Heinzel A (2001) Nature (London) 414:345

    Article  CAS  Google Scholar 

  3. Cortright RD, Davada RR, Dumesic JA (2002) Nature (London) 418:964

    Article  CAS  Google Scholar 

  4. Alper J (2003) Science 299:1686

    Article  CAS  PubMed  Google Scholar 

  5. Coontz R, Hanson B (2004) Science 305:972

    Article  Google Scholar 

  6. Barman S, Sen P, Das GP (2008) J Phys Chem C 112:19963

    Article  CAS  Google Scholar 

  7. Mohan M, Sharma VK, Kumar EA, Gayathri V (2019) Energy Storage 1:e35

    Article  CAS  Google Scholar 

  8. Khare R (2005) J Miner Mater Charact Eng 4:31

    Google Scholar 

  9. Zhao Y, Kim Y, Dillon AC, Heben MJ, Zhang SB (2005) Phys Rev Lett 94:155504

    Article  PubMed  CAS  Google Scholar 

  10. Yildirim T, Íniguez J, Ciraci S (2005) Phys Rev B 72:153403

    Article  CAS  Google Scholar 

  11. Sun Q, Wang Q, Jena P, Kawazoe Y (2005) J Am Chem Soc 127:14582

    Article  CAS  PubMed  Google Scholar 

  12. Chandakumar KRS, Ghosh SK (2008) Nano Lett 8:13

    Article  CAS  Google Scholar 

  13. Paine RT, Narula CK (1990) Chem Rev 90:73

    Article  CAS  Google Scholar 

  14. Oku T, Hirano T, Kuno M, Kusunose T, Niihare K, Suganuma K (2000) Mater Sci Eng B 74:206

    Article  Google Scholar 

  15. Oku T, Kuno M, Kitahara H, Nartia I (2001) Int J Inorg Mater 3:597

    Article  CAS  Google Scholar 

  16. Ma RZ, Bando Y, Zhu HW, Sato T, Xu CL, Wu DH (2002) J Am Chem Soc 124:7672

    Article  CAS  PubMed  Google Scholar 

  17. Tang CC, Bando Y, Ding XX, Qi SR, Golberg D (2002) J Am Chem Soc 124:14550

    Article  CAS  PubMed  Google Scholar 

  18. Han SS, Kang JK, Lee HM, van Duin ACT, Goddard WA (2005) J Chem Phys 123:114703

    Article  PubMed  CAS  Google Scholar 

  19. Zhou Z, Zhao JJ, Chen ZF, Gao XP, Yan TY, Wen B, Schleyer PR (2006) J Phys Chem B 110:13363

    Article  CAS  PubMed  Google Scholar 

  20. Wu XJ, Yang JL, Hou JG, Zhu QS (2004) Phys Rev B 69:153411

    Article  CAS  Google Scholar 

  21. Cui X-Y, Yang B-S, Wu H-S (2010) J Mol Struct: THEOCHEM 941:144

    Article  CAS  Google Scholar 

  22. Oku T, Kuno M, Narita I (2004) J Phys Chem Solid 65:549

    Article  CAS  Google Scholar 

  23. Sun Q, Wang Q, Jena P (2005) Nano Lett 5:1273

    Article  CAS  PubMed  Google Scholar 

  24. Timoshkin AY, Schaefer HF (2005) Inorg Chem 44:843

    Article  CAS  PubMed  Google Scholar 

  25. Schaumlöffel A, Linnolahti M, Karttunen AJ, Pakkanen TA (2007) Chem Phys Chem 8:62

    Article  PubMed  CAS  Google Scholar 

  26. Wang H, Wu H-S, Jia J-F (2006) Chin J Chem 24:731

    Article  CAS  Google Scholar 

  27. Karttunen AJ, Linnolahti M, Pakkanen TA (2008) J Phys Chem C 112:10032

    Article  CAS  Google Scholar 

  28. Tanskanen JT, Linnolahti M, Karttunen AJ, Pakkanen TA (2008) J Phys Chem C 112:2418

    Article  CAS  Google Scholar 

  29. Jia J-F, Wang H, Pei X-Q, Wu H-S (2007) Appl Surf Sci 253:4485

    Article  CAS  Google Scholar 

  30. Sun Q, Jena P, Wang Q, Marquez M (2006) J Am Chem Soc 128:9741

    Article  CAS  PubMed  Google Scholar 

  31. Niu J, Rao BK, Jena P (1992) Phys Rev Lett 68:2277

    Article  CAS  PubMed  Google Scholar 

  32. Rao BK, Jena P (1992) Eur Phys Lett 20:307

    Article  CAS  Google Scholar 

  33. Wang Q, Jena P (2012) J Phys Chem Lett 3:1084

    Article  PubMed  CAS  Google Scholar 

  34. Koi N, Oku T (2004) Solid State Commun 131:121

    Article  CAS  Google Scholar 

  35. Zhao Y, Truhlar DG (2008) Theor Chem Account 120:215

    Article  CAS  Google Scholar 

  36. Møller C, Plesset MS (1934) Phys Rev 46:618

    Article  Google Scholar 

  37. Hariharan PC, Pople JA (1974) Mol Phys 27:209

    Article  CAS  Google Scholar 

  38. Anafcheh M, Naderi F (2018) Int J Hydrog Energy 43:12271

    Article  CAS  Google Scholar 

  39. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735

    Article  CAS  Google Scholar 

  40. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  41. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  42. Gordon MS, Schmidt MW, Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) (2005) Advances in electronic structure theory: GAMESS a decade later. In: Theory and applications of computational chemistry: the first forty years. Elsevier, Amsterdam

    Google Scholar 

Download references

Acknowledgements

We gratefully appreciate the financial support from the Research Council of Alzahra University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Anafcheh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 56 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anafcheh, M., Zahedi, M. Theoretical exploration of the LiF-decorated BN cages as hydrogen storage materials. Monatsh Chem 152, 931–938 (2021). https://doi.org/10.1007/s00706-021-02819-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02819-2

Keywords

Navigation