Skip to main content
Log in

NiO micro/nanoparticles decorated carbon-based anode for the fuel cell applications in alkaline medium

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In this study, a non-enzymatic and low-cost method was presented for fuel cell applications in alkaline medium based on the utilization of nickel oxide micro/nanoparticles (NiOMNPs) for carbon-based anode fabrication. NiOMNPs were synthesized through a practical strategy, namely, wet chemical precipitation method. Due to the fact that NiOMNPs can catalyze the oxidation reactions of various organic compounds in alkaline medium, the performance of NiOMNPs decorated carbon paste electrode (CPE) was examined using cyclic voltammetry to select the most appropriate fuel to construct the fuel cell. After the optimization of NiOMNPs amount on CPE, electrocatalytic behavior of NiOMNPs/CPE in alkaline medium was investigated for the ethanol oxidation reaction. Two-compartment ethanol fuel cell using a salt bridge was fabricated to calculate power density and current density values. The results showed that NiOMNPs/CPE could be an alternative to the anodes utilized in enzymatic and microbial fuel cells.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pal M, Sharma RK (2020) Biomass Bioenergy 138:105591

    Article  CAS  Google Scholar 

  2. Panwar N, Kaushik S, Kothari S (2011) Renew Sustain Energy Rev 15:1513

    Article  Google Scholar 

  3. OECD green growth studies: Energy (2011) OECD Publishing Paris, France. https://www.oecd.org/greengrowth/greening-energy/49157219.pdf

  4. Chebanenko M, Lobinsky A, Nevedomskiy V, Popkov V (2020) Dalton Trans 49:12088

    Article  CAS  PubMed  Google Scholar 

  5. Sørensen B, Spazzafumo G (2018) Hydrogen and fuel cells: emerging technologies and applications. Academic Press

    Google Scholar 

  6. Abdullah N, Kamarudin S (2015) J Power Sour 278:109

    Article  CAS  Google Scholar 

  7. Akinyele D, Olabode E, Amole A (2020) Inventions 5:42

    Article  Google Scholar 

  8. Habibi B, Haghighi Shishavani Y (2019) Iran J Chem Chem Eng 38:167

    CAS  Google Scholar 

  9. Yang Y, Sun X, Han G, Liu X, Zhang X, Sun Y, Zhang M, Cao Z, Sun Y (2019) Angew Chem 131:10754

    Article  Google Scholar 

  10. Akhairi M, Kamarudin S (2016) Int J Hydrogen Energy 41:4214

    Article  CAS  Google Scholar 

  11. Antolini E (2007) J Power Sour 170:1

    Article  CAS  Google Scholar 

  12. Carrette L, Friedrich KA, Stimming U (2000) ChemPhysChem 1:162

    Article  CAS  PubMed  Google Scholar 

  13. Tepeli Y, Anik U (2015) Electrochem Commun 57:31

    Article  CAS  Google Scholar 

  14. Aslan S, Conghaile PÓ, Leech D, Gorton L, Timur S, Anik U (2017) Electroanalysis 29:1651

    Article  CAS  Google Scholar 

  15. Mishra P, Lakshmi G, Mishra S, Avasthi D, Swart HC, Turner AP, Mishra YK, Tiwari A (2017) Nano Energy 39:601

    Article  CAS  Google Scholar 

  16. Chen X, Yin L, Lv J, Gross AJ, Le M, Gutierrez NG, Li Y, Jeerapan I, Giroud F, Berezovska A (2019) Adv Funct Mater 29:1905785

    Article  CAS  Google Scholar 

  17. Almunla M, Tepeli Büyüksünetçi Y, Akpolat O, Anık Ü (2021) Electroanalysis 33:873

    Article  CAS  Google Scholar 

  18. Cui Z, Hu J, Jiang X, Zhang D, Fang C (2021) J Alloys Compd 855:157385

    Article  CAS  Google Scholar 

  19. Lu B, Yao B, Roseman G, Deming CP, Lu JE, Millhauser GL, Li Y, Chen S (2017) ChemElectroChem 4:2211

    Article  CAS  Google Scholar 

  20. Cermenek B, Ranninger J, Hacker V (2019) Alkaline direct ethanol fuel cell. In: Basile A, Iulianelli A, Dalena F, Veziroğlu TN (eds) Ethanol. Elsevier

    Google Scholar 

  21. Su Y-Z, Zhang M-Z, Liu X-B, Li Z-Y, Zhu X-C, Xu C-W, Jiang SP (2012) Int J Electrochem Sci 7:4158

    CAS  Google Scholar 

  22. Zhu M, Sun G, Xin Q (2009) Electrochim Acta 54:1511

    Article  CAS  Google Scholar 

  23. Beyhan S, Léger J-M, Kadırgan F (2013) Appl Catal B 130:305

    Article  CAS  Google Scholar 

  24. Yu W, Porosoff MD, Chen JG (2012) Chem Rev 112:5780

    Article  CAS  PubMed  Google Scholar 

  25. Xu C, Wang H, Shen PK, Jiang SP (2007) Adv Mater 19:4256

    Article  CAS  Google Scholar 

  26. Cai J, Huang Y, Guo Y (2013) Electrochim Acta 99:22

    Article  CAS  Google Scholar 

  27. Amani-Beni Z, Nezamzadeh-Ejhieh A (2018) Anal Chim Acta 1031:47

    Article  CAS  PubMed  Google Scholar 

  28. Wu X, Shi Z, Zou L, Li CM, Qiao Y (2018) J Power Sour 378:119

    Article  CAS  Google Scholar 

  29. Shu Y, Yan Y, Chen J, Xu Q, Pang H, Hu X (2017) ACS Appl Mater Interfaces 9:22342

    Article  CAS  PubMed  Google Scholar 

  30. Eisa T, Mohamed HO, Choi Y-J, Park S-G, Ali R, Abdelkareem MA, Oh S-E, Chae K-J (2020) Int J Hydrogen Energy 45:5948

    Article  CAS  Google Scholar 

  31. Zito CA, Perfecto TM, Fonseca CS, Volanti DP (2018) New J Chem 42:8638

    Article  CAS  Google Scholar 

  32. Sun W, Chen L, Meng S, Wang Y, Li H, Han Y, Wei N (2014) Mater Sci Semicond Process 17:129

    Article  CAS  Google Scholar 

  33. Yin X, Zhi C, Sun W, Lv L-P, Wang Y (2019) J Mater Chem A 7:7800

    Article  CAS  Google Scholar 

  34. Anandan B, Rajendran V (2011) Mater Sci Semicond Process 14:43

    Article  CAS  Google Scholar 

  35. Srihasam S, Thyagarajan K, Korivi M, Lebaka VR, Mallem SPR (2020) Biomolecules 10:89

    Article  CAS  PubMed Central  Google Scholar 

  36. Ma MJS, Ab SN (2015) J New Technol Mater 3:14

    Google Scholar 

  37. Bahari-Molla-Mahaleh Y, Sadrnezhaad SK, Hosseini D (2008) J Nanomater 2008:470595

    Article  Google Scholar 

  38. Meher SK, Justin P, Ranga Rao G (2011) ACS Appl Mater Interfaces 3:2063

    Article  CAS  PubMed  Google Scholar 

  39. Zhou Q, Umar A, Amine A, Xu L, Gui Y, Ibrahim AA, Kumar R, Baskoutas S (2018) Sens Actuators B 259:604

    Article  CAS  Google Scholar 

  40. Zeng G, Li W, Ci S, Jia J, Wen Z (2016) Sci Rep 6:1

    Article  CAS  Google Scholar 

  41. Amin S, Tahira A, Solangi AR, Mazzaro R, Ibupoto ZH, Fatima A, Vomiero A (2020) Electroanalysis 32:1052

    Article  CAS  Google Scholar 

  42. Motheo A, Tremiliosi-Filho G, Gonzalez E, Kokoh KB, Léger J-M, Lamy C (2006) J Appl Electrochem 36:1035

    Article  CAS  Google Scholar 

  43. Sharifi E, Salimi A, Shams E (2013) Biosens Bioelectron 45:260

    Article  CAS  PubMed  Google Scholar 

  44. Mozafari V, Parsa JB (2020) Int J Hydrogen Energy 45:28847

    Article  CAS  Google Scholar 

  45. Shaikh R, Rizvi A, Quraishi M, Pandit S, Mathuriya AS, Gupta PK, Singh J, Prasad R (2020). S Afr J Bot. https://doi.org/10.1016/j.sajb.2020.09.025

    Article  Google Scholar 

  46. Campbell AS, Jose MV, Marx S, Cornelius S, Koepsel RR, Islam MF, Russell AJ (2016) RSC Adv 6:10150

    Article  CAS  Google Scholar 

  47. Oshchepkov AG, Braesch G, Ould-Amara S, Rostamikia G, Maranzana G, Bonnefont A, Papaefthimiou V, Janik MJ, Chatenet M, Savinova ER (2019) ACS Catal 9:8520

    Article  CAS  Google Scholar 

  48. Braesch G, Oshchepkov AG, Bonnefont A, Asonkeng F, Maurer T, Maranzana G, Savinova ER, Chatenet M (2020) ChemElectroChem 7:1789

    Article  CAS  Google Scholar 

  49. Aytaç A, Gürbüz M, Sanli AE (2011) Int J Hydrogen Energy 36:10013

    Article  CAS  Google Scholar 

  50. Tamboli AH, Gosavi S, Terashima C, Fujishima A, Pawar AA, Kim H (2018) Chemosphere 202:669

    Article  CAS  PubMed  Google Scholar 

  51. Churikov AV, Ivanishchev AV, Gamayunova IM, Ushakov AV (2011) J Chem Eng Data 56:3984

    Article  CAS  Google Scholar 

  52. Churikov AV, Zapsis KV, Khramkov VV, Churikov MA, Gamayunova IM (2011) J Chem Eng Data 56:383

    Article  CAS  Google Scholar 

  53. Churikov A, Gamayunova I, Zapsis K, Churikov M, Ivanishchev A (2012) Int J Hydrogen Energy 37:335

    Article  CAS  Google Scholar 

  54. Davila D, Esquivel J, Vigues N, Sanchez O, Garrido L, Tomas N, Sabate N, Del Campo F, Munoz F, Mas J (2008) J New Mater Electrochem Syst 11:99

    CAS  Google Scholar 

  55. Sheela T, Nayaka YA (2012) Chem Eng J 191:123

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Prof. Ülkü Anık for the valuable mentorship and support throughout the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuğba Ören Varol.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ören Varol, T. NiO micro/nanoparticles decorated carbon-based anode for the fuel cell applications in alkaline medium. Monatsh Chem 152, 777–783 (2021). https://doi.org/10.1007/s00706-021-02797-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02797-5

Keywords

Navigation