Skip to main content
Log in

Theoretical modeling of homogenous gold-catalyzed or NaH-supported alkyne cyclization

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Gold-catalyzed or NaH-supported formation mechanisms of pyrazine and diazepines were investigated computationally. The structural properties of these heterocyclic compounds were studied in the gas phase and various solvents. Density functional theory, including B3LYP, WB97X-D, M06-2X, and M06 hybrid functional methods, was used to locate and discuss the energetics of the intermediates and the transition states. The nature of the substituents attached to the terminal alkyne played an essential role in these mechanisms. Electron-donating or electron-withdrawing substituents indicated in which direction the cyclization would evolve. Natural bond orbital analysis was performed to determine the chemoselectivity of the products.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Eicher T, Hauptmann S, Speicher A (2003) The chemistry of heterocycles, 2nd edn. Wiley-VCH Verlag GmbH & Co

    Book  Google Scholar 

  2. Bartoli G, Dalpozzo R, Nardi M (2014) Chem Soc Rev 43:4728

    Article  CAS  Google Scholar 

  3. Likhosherstov AM, Filippova OV, Peresada VP, Kryzhanovskii SA, Vititnova MB, Kaverina NV, Reznikov KM (2003) Pharm Chem J 37:6

    Article  CAS  Google Scholar 

  4. Seredenin SB, Voronina TA, Beshimov A, Peresada VP, Likhosherstov AM (1997) Tetrahydropyrrolopyrazine with antiamnesic and antihypoxic activity. Patent RU 2099055, Dec 20, 1997; (1998) Chem Abstr 128:290245

  5. Park S, Jung Y, Kim I (2014) Tetrahedron 70:7534

    Article  CAS  Google Scholar 

  6. Vlahov IR, Qi L, Krishna R, Santhapuram H, Felten A, Parham GL, Zou N, Wang K, You F, Vaughn JF, Hahn SJ, Klein HF, Kleindl PJ, Reddy J, Reno D, Nicoson J, Leamon CP (2020) Bioorg Med Chem Lett 30:126987

    Article  CAS  Google Scholar 

  7. Dimitriou E, Jones RH, Pritchard RG, Miller GJ, O’Brien M (2018) Tetrahedron 74:6795

    Article  CAS  Google Scholar 

  8. Smith SG, Sanchez R, Zhou MM (2014) J Chem Biol 21:573

    Article  CAS  Google Scholar 

  9. Basceken S, Balci M (2015) J Org Chem 80:3806

    Article  CAS  Google Scholar 

  10. Basceken S, Kaya S, Balci M (2015) J Org Chem 80:12552

    Article  CAS  Google Scholar 

  11. Çetinkaya Y, Balci M (2014) Tetrahedron Lett 55:6698

    Article  Google Scholar 

  12. Ferrer C, Echavarren AM (2006) Angew Chem Int Ed 45:1105

    Article  CAS  Google Scholar 

  13. Basceken S (2020) Struct Chem 31:1765

    Article  CAS  Google Scholar 

  14. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2009) Gaussian 09, Revision E.01. Gaussian, Inc, Wallingford, CT

  15. Kohn W, Sham L (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  16. Parr RG, Yang W (1995) Ann Rev Phys Chem 46:701

    Article  CAS  Google Scholar 

  17. Kohn W, Becke AD, Parr RG (1996) J Phys Chem 100:12974

    Article  CAS  Google Scholar 

  18. Chai JD, Gordon MH (2009) J Chem Phys 131:174105

    Article  Google Scholar 

  19. Escrich CR, Davis RL, Jiang H, Stiller J, Johansen TK, Jørgensen KA (2013) Chem Eur J 19:2932

    Article  Google Scholar 

  20. Silla JM, Duarte CJ, Rittner R, Freitas MP (2013) RSC Adv 3:25765

    Article  CAS  Google Scholar 

  21. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  22. Hohenstein EG, Samuel ST, Sherrill CD (2008) J Chem Theory Comput 4:1996

    Article  CAS  Google Scholar 

  23. Wadt WR, Hay PJ (1985) J Chem Phys 82:299

    Article  Google Scholar 

  24. Dennington RD, Keith TA, Millam JM (2000) Semichem Inc

  25. Fukui K (1981) Acc Chem Res 14:363

    Article  CAS  Google Scholar 

  26. CYLview v1.0beta (2009) University of Sherbrooke, Canada

  27. Miertuš S, Scrocco E, Tomasi J (1981) Chem Phys 55:117

    Article  Google Scholar 

  28. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211

    Article  CAS  Google Scholar 

  29. Reiher M, Salomon O, Hess BA (2001) Theor Chem Acc 107:48

    Article  CAS  Google Scholar 

  30. Schultz N, Zhao Y, Truhlar DG (2005) J Phys Chem A 109:4388

    Article  CAS  Google Scholar 

  31. Schultz N, Zhao Y, Truhlar DG (2005) J Phys Chem A 109:11127

    Article  CAS  Google Scholar 

  32. Harvey JN (2006) Annu Rep Prog Chem Sect C Phys Chem 102:203

    Article  CAS  Google Scholar 

  33. Dinesh VV, Marie EK, Igor VA (2016) J Am Chem Soc 138:2769

    Article  Google Scholar 

  34. Rajaei I, Mirsattari SN (2018) J Mol Struct 1163:236

    Article  CAS  Google Scholar 

  35. Najafi M, Morsali A, Bozorgmehr MR (2019) Struct Chem 30:715

    Article  CAS  Google Scholar 

  36. Morgan KM, Gronert S (2000) J Org Chem 65:1461

    Article  CAS  Google Scholar 

  37. Raspoet G, Vanquickenborne LG, Nguyen MT (1997) J Am Chem Soc 119:2552

    Article  Google Scholar 

  38. Ozen SA, Erdem SS, Aviyente V (1998) Struct Chem 9:15

    Article  CAS  Google Scholar 

  39. Cramer CJ, Truhlar DG (1991) J Am Chem Soc 113:8305

    Article  CAS  Google Scholar 

  40. Wiest O, Houk KN (1994) J Org Chem 59:7582

    Article  CAS  Google Scholar 

  41. Wong MW, Frisch MJ, Wiberg KB (1991) J Am Chem Soc 113:4776

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Scientific Research Department (BAP, Project No. FEF.19001.19.003) of Hitit University is gratefully acknowledged. Thanks are also due to the Scientific and Technological Research Council of Turkey (TUBITAK) to use its ULAKBIM/TRUBA high performance and grid computing centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinan Basceken.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 598 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basceken, S. Theoretical modeling of homogenous gold-catalyzed or NaH-supported alkyne cyclization. Monatsh Chem 152, 607–624 (2021). https://doi.org/10.1007/s00706-021-02775-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02775-x

Keywords

Navigation