Skip to main content

Stabilization mechanisms of three novel full-nitrogen molecules

Abstract

Full-nitrogen energetic materials have excellent performance in the quest for higher-energy and greener explosive materials. Herein, the structure, properties under electric field, transition state, and unimolecular decomposition of octaazapentalene (o-N8), azidopentazole (a-N8), and bispentazole (N10) are studied in detail using density functional theory methods. The results show that three molecules are aromatic and each N atom is in the molecular plane. Applied electric field will change the bond length, atomic charge, and rate constant of thermal decomposition. The two pentazole rings of N10 immediately change from being in a plane (180°) to being perpendicular to each other (90.64°–91.81°) when the absolute value of the electric field intensity is greater than 40 × 10–4 a.u. The stability order of the three molecules is o-N8 > a-N8 > N10 judged by the activation energy of the initial decompostion. In addition to decompose to N2 in the azole ring, o-N8 was found to have a new pathway to eliminate N2 in the azide group. Moreover, ab initio molecular dynamics simulations were performed to further reveal the effect of different temperatures on the cleavage of single molecules.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Zhang C, Sun C, Hu B, Lu M (2017) Science 355:374

    CAS  Article  Google Scholar 

  2. 2.

    Xu Y, Wang Q, Shen C, Lin Q, Wang P, Lu M (2017) Nature 549:78

    CAS  Article  Google Scholar 

  3. 3.

    Yang C, Zhang C, Zheng Z, Zheng Z, Jiang C, Luo J, Du Y, Hu B, Sun C, Christe KO (2018) J Am Chem Soc 140:16488

    CAS  Article  Google Scholar 

  4. 4.

    Wang P, Xu Y, Lin Q, Lu M (2018) Chem Soc Rev 47:7522

    CAS  Article  Google Scholar 

  5. 5.

    Zarko VE (2010) Combust Explo Shock 46:121

    Article  Google Scholar 

  6. 6.

    Samartzis PC, Wodtke AM (2006) Inter Rev Phys Chem 25:527

    CAS  Article  Google Scholar 

  7. 7.

    Christe KO, Wilson WW, Sheehy JA, Boatz JA (1999) Angew Chem Int Ed 38:2004

    CAS  Article  Google Scholar 

  8. 8.

    Vij A, Wilson WW, Vij V, Tham FS, Sheehy JA, Christe KO (2001) J Am Chem Soc 123:6308

    CAS  Article  Google Scholar 

  9. 9.

    Wilson WW, Vij A, Vij V, Bernhardt E, Christe KO (2003) Chem Eur J 9:2839

    Article  Google Scholar 

  10. 10.

    Haiges R, Schneider S, Schroer T, Christe KO (2004) Angew Chem Int Ed 43:4919

    CAS  Article  Google Scholar 

  11. 11.

    Cacace F (2002) Science 295:480

    CAS  Article  Google Scholar 

  12. 12.

    Fau S, Wilson KJ, Bartlett RJ (2002) J Phys Chem A 106:725

    Article  Google Scholar 

  13. 13.

    Liu S, Zhao L, Yao M, Miao M, Liu B (2020) Adv Sci 7:1902320

    CAS  Article  Google Scholar 

  14. 14.

    Yang J, Gong X, Wang G (2015) Struct Chem 26:1077

    CAS  Article  Google Scholar 

  15. 15.

    Wang F, Du H, Zhang J, Gong X (2011) J Phys Chem A 115:11788

    CAS  Article  Google Scholar 

  16. 16.

    Atkins PW (1992) Physical chemistry. Oxford University Press, Oxford

    Google Scholar 

  17. 17.

    Politzer P, Murray JS, Grice ME, DeSalvo M, Miller E (1997) Mol Phys 91:923

    CAS  Article  Google Scholar 

  18. 18.

    Astakhov AM, Stepanov RS, Babushkin AY (1998) Combust Explo Shock 34:85

    Article  Google Scholar 

  19. 19.

    Ghule VD, Jadhav PM, Patil RS, Radhakrishnan S, Soman TJ (2010) J Phys Chem A 114:498

    CAS  Article  Google Scholar 

  20. 20.

    Bader RF (1990) Atoms in molecules. International series of monographs in chemistry. Oxford University Press, Oxford

    Google Scholar 

  21. 21.

    Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397

    CAS  Article  Google Scholar 

  22. 22.

    Lu T, Chen F (2011) Acta Phys Chim Sin 27:2786

    CAS  Article  Google Scholar 

  23. 23.

    Ren FD, Cao DL, Shi WJ, You M (2017) RSC Adv 7:47063

    CAS  Article  Google Scholar 

  24. 24.

    Gao H, Zhang S, Ren F, Liu F, Gou R, Ding X (2015) Comput Mater Sci 107:33

    CAS  Article  Google Scholar 

  25. 25.

    Greschner MJ, Zhang M, Majumdar A, Liu H, Peng F, Tse JS, Yao Y (2016) J Phys Chem A 120:2920

    CAS  Article  Google Scholar 

  26. 26.

    Becke AD (1993) J Chem Phys 98:5648

    CAS  Article  Google Scholar 

  27. 27.

    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    CAS  Article  Google Scholar 

  28. 28.

    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    CAS  Article  Google Scholar 

  29. 29.

    McLean A, Chandler G (1980) J Chem Phys 72:5639

    CAS  Article  Google Scholar 

  30. 30.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09 Rev. D.01. Gaussian Inc, Wallingford

    Google Scholar 

  31. 31.

    Martínez-Núñez E (2015) J Comput Chem 36:222

    Article  Google Scholar 

  32. 32.

    Martínez-Nñez E (2015) Phys Chem Chem Phys 17:14912

    Article  Google Scholar 

  33. 33.

    Lu T, Chen F (2012) J Comput Chem 33:580

    Article  Google Scholar 

  34. 34.

    Wu Q, Zhu WH, Xiao HM (2014) RSC Adv 4:3789

    CAS  Article  Google Scholar 

  35. 35.

    Kamlet MJ, Jacobs SJ (1968) J Chem Phys 48:23

    CAS  Article  Google Scholar 

  36. 36.

    Politzer P, Murray JS (2014) J Mol Model 20:2223

    Article  Google Scholar 

  37. 37.

    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    CAS  Article  Google Scholar 

  38. 38.

    Segall MD, Lindan PJD, Probert MIJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) J Phys Condens Mat 14:2717

    CAS  Article  Google Scholar 

  39. 39.

    Troullier N, Martins JL (1991) Phys Rev B 43:1993

    CAS  Article  Google Scholar 

  40. 40.

    Nose S (1984) J Chem Phys 81:511

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21975128, 21903044, and 11972178).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Bing-Cheng Hu or Xue-Hai Ju.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, L., Zhang, C., Sun, CG. et al. Stabilization mechanisms of three novel full-nitrogen molecules. Monatsh Chem 152, 421–430 (2021). https://doi.org/10.1007/s00706-021-02755-1

Download citation

Keywords

  • Full-nitrogen molecules
  • Decomposition mechanism
  • Electric field
  • Stability