Skip to main content
Log in

Geometric, optical, and phosphorescent properties of cationic Ir(III) and Rh(III) complexes with cyclometalated ligands: DFT/TDDFT investigations

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In this work, we studied ground and first excited triplet state geometries, optical and phosphorescence properties of the two complexes [M(C^N)2(N^N)]+ with M = Ir and Rh, C^N = 2-(p-tolyl)pyridinato, and N^N = 4,4′-bis(hydroxymethyl)-2,2′-bipyridine using DFT and TD-DFT methods. The lowest absorptions were simulated and assigned to the observed absorptions. Geometric and natural orbital analyses show that the first excited triplet states correspond mainly to 3LL charge transfer. Phosphorescence study shows that the two complexes exhibit green-yellow (λmax = 553 nm) and blue phosphorescence color (λmax = 461 nm), respectively.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boffa LS, Novak BM (2000) Chem Rev 100:1479

    Article  CAS  PubMed  Google Scholar 

  2. Dehnicke K, Krieger M, Massa W (1999) Coord Chem Rev 182:19

    Article  Google Scholar 

  3. Latouche C, Skouteris D, Palazzetti F, Barone V (2015) J Chem Theory Comput 11:3281

    Article  CAS  PubMed  Google Scholar 

  4. Vazart F, Latouche C (2015) Theor Chem Acc 134:144

    Article  Google Scholar 

  5. Roberts ST, Schlenker CW, Barlier V, McAnally RE, Zhang Y, Mastron JN, Thompson ME, Bradforth SE (2011) J Phys Chem Lett 2:48

    Article  CAS  PubMed  Google Scholar 

  6. Qian M, Zhang R, Hao J, Zhang W, Zhang Q, Wang J, Tao Y, Chen S, Fang J, Huang W (2015) Adv Mater 27:3546

    Article  CAS  PubMed  Google Scholar 

  7. Wu Q, Cheng Y, Xue Z, Gao X, Wang M, Yuan W, Huettner S, Wan S, Cao X, Tao Y, Huang W (2019) Chem Commun 55:2640

    Article  CAS  Google Scholar 

  8. Zhang Y, Liu Z, Yang K, Zhang Y, Xu Y, Li H, Wang C, Lu A, Sun S (2015) Sci Rep 5:8172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun B, Liang Z, Xie B-P, Li R-T, Li L-Z, Jiang Z-H, Bai L-P, Chen J-X (2018) Talanta 179:658

    Article  CAS  PubMed  Google Scholar 

  10. Mao M, Peng J, Lam T-L, Ang W-H, Li H, Cheng G, Che C-M (2019) Mater Chem C 7:7230

    Article  CAS  Google Scholar 

  11. Pal AK, Krotkus S, Fontani M, Mackenzie CFR, Cordes DB, Slawin AMZ, Samuel IDW, Zysman-Colman E (2018) Adv Mater 30:1804231

    Article  Google Scholar 

  12. Wu F, Li J, Tong H, Li Z, Adachi C, Langlois A, Harvey PD, Liu L, Wong W-Y, Wong W-K (2015) Mater Chem C 3:138

    Article  CAS  Google Scholar 

  13. Hu Y, Maclennan A, Sham TK (2015) J Lumin 166:143

    Article  CAS  Google Scholar 

  14. Yang H, Meng G, Zhou Y, Tang H, Zhao J, Wang Z (2015) Mater 8:6105

    Article  CAS  Google Scholar 

  15. Dumur F, Nasr G, Wantz G, Mayer CR, Dumas E, Guerlin A, Miomandre F, Clavier G, Bertin D, Gigmes D (2011) Org Electron 12:1683

    Article  CAS  Google Scholar 

  16. Lu G-Z, Wu R, Liu L, Zhou L, Zheng Y-X, Zhang W-W, Zuo J-L, Zhang H (2019) Mater Chem Front 3:860

    Article  CAS  Google Scholar 

  17. Roy P, Sarkar D, Ghosh P, Manna CK, Murmu N, Mondal TK (2020) J Mol Struct 1204:127524

    Article  CAS  Google Scholar 

  18. Brahim H, Haddad B, Brahim S, Guendouzi A (2017) J Mol Model 23:344

    Article  PubMed  Google Scholar 

  19. Wei F, Lai S-L, Zhao S, Ng M, Chan M-Y, Yam VW-W, Wong KM-C (2019) J Am Chem Soc 141:12863

    Article  CAS  PubMed  Google Scholar 

  20. Nazeeruddin MK, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Grätzel M (2005) J Am Chem Soc 127:16835

    Article  CAS  PubMed  Google Scholar 

  21. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Article  Google Scholar 

  22. Jamorski C, Casida ME, Salahub DR (1996) J Chem Phys 104:5134

    Article  CAS  Google Scholar 

  23. Petersilka M, Gossmann UJ, Gross EKU (1996) Phys Rev Lett 76:1212

    Article  CAS  PubMed  Google Scholar 

  24. Hadji D, Brahim H (2018) Theor Chem Acc 137:180

    Article  Google Scholar 

  25. Stoliaroff A, Rio J, Latouche C (2019) New J Chem 43:11903

    Article  CAS  Google Scholar 

  26. Minaev B, Minaeva V, Ågren H (2009) J Phys Chem A 113:726

    Article  CAS  PubMed  Google Scholar 

  27. Wang Q, Zhao L, Han D (2020) Polyhedron 185:114602

    Article  CAS  Google Scholar 

  28. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200

    Article  CAS  Google Scholar 

  29. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  30. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51

    Article  CAS  Google Scholar 

  31. Naoui M, Brahim H, Guendouzi A (2020) J Photochem Photobiol A 398:112624

    Article  CAS  Google Scholar 

  32. Seghir I, Nebbache N, Meftah Y, Hachani SE, Maou S (2019) Acta Chim Slov 66:9

    Article  Google Scholar 

  33. Vazart F, Latouche C, Bloino J, Barone V (2015) Inorg Chem 54:5588

    Article  CAS  PubMed  Google Scholar 

  34. Graf M, Siegmund D, Metzler-Nolte N, Sünkel K, Böttcher H-C (2019) Inorg Chim Acta 487:9

    Article  CAS  Google Scholar 

  35. Brahim H (2019) J Lumin 210:96

    Article  CAS  Google Scholar 

  36. Graf M, Gothe Y, Metzler-Nolte N, Czerwieniec R, Sünkel K (2017) Inorg Chim Acta 463:36

    Article  CAS  Google Scholar 

  37. Dolg M, Wedig U, Stoll H, Preuss H (1987) J Chem Phys 86:866

    Article  CAS  Google Scholar 

  38. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257

    Article  CAS  Google Scholar 

  39. Petersson A, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J (1988) J Chem Phys 89:2193

    Article  CAS  Google Scholar 

  40. Cances E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032

    Article  CAS  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Going J, Pengs B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford CT

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houari Brahim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seghir, I., Nebbache, N. & Brahim, H. Geometric, optical, and phosphorescent properties of cationic Ir(III) and Rh(III) complexes with cyclometalated ligands: DFT/TDDFT investigations. Monatsh Chem 152, 315–322 (2021). https://doi.org/10.1007/s00706-021-02750-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02750-6

Keywords

Navigation