Skip to main content
Log in

Voltammetric study of the affinity of divalent heavy metals for guanine-functionalized iron oxide nanoparticles

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In this study, a novel nanobiomaterial based on (3-aminopropyl)triethoxysilane (APTES)-coated iron oxide (Fe3O4) nanoparticles functionalized with newly synthesized guanine hydrazide (GH) was elaborated. A boron-doped diamond electrode coated with GH-APTES–Fe3O4 nanoparticles was used to assess the interaction of heavy metal ions with guanine hydrazide. The adsorption isotherms were electrochemically investigated and it was shown that the adsorption capacity of the nanoparticles towards heavy metals decreased in the following order: Cu2+ > Pb2+ > Cd2+. From the calibration curves, the sensitivities of detection were as follows: 171.6 µA/µM for Cu(II), 156 µA/µM for Pb(II), and 101.4 µA/µM for Cd(II).

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhou SF, Han XJ, Liu YQ (2016) J Alloys Compd 684:1

    CAS  Google Scholar 

  2. Toor SK, Devi P, Bansod BKS (2015) Aquat Procedia 4:1107

    Google Scholar 

  3. Dedelaite L, Kizilkaya S, Incebay H, Ciftci H, Ersoz M, Yazicigil Z, Oztekin Y, Ramanaviciene A, Ramanavicius A (2015) Colloids Surf A 483:279

    CAS  Google Scholar 

  4. Zhan S, Wu Y, Wang L, Zhan X, Zhou P (2016) Biosens Bioelectron 86:353

    CAS  PubMed  Google Scholar 

  5. Roland KO, Sigel HS (2010) Acc Chem Res 43:974

    Google Scholar 

  6. Kanellis VG, Dos Remedios CG (2018) Biophys Rev 10:1401

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang XB, Kong RM, Lu Y (2011) Annu Rev Anal Chem 4:105

    CAS  Google Scholar 

  8. Saidur MR, Aziz AR, Basirun WJ (2017) Biosens Bioelectron 90:125

    CAS  PubMed  Google Scholar 

  9. Moriwaki H (2003) J Mass Spectrom 38:321

    CAS  PubMed  Google Scholar 

  10. Burda JV, Šponer J, Šebesta F (2017) Metal interactions with nucleobases, base pairs, and oligomer sequences; computational approach. In: Leszczynski J, Kaczmarek-Kedziera A, Puzyn T, Papadopoulos MG, Reis H, Shukla MK (eds) Handbook of computational chemistry, 2nd edn. Springer, Berlin, p 1827

    Google Scholar 

  11. Subramanian P, Dryhurst G (1987) J Electroanal Chem 224:137

    CAS  Google Scholar 

  12. Afkhami A, Moosavi R, Madrakian T, Keypour H, Ramezani-Aktij A, Mirzaei-Monsef M (2014) Electroanalysis 26:786

    CAS  Google Scholar 

  13. Wang G, Ma Y, Tong Y, Dong X (2016) Smart Mater Struct 25:035028

    Google Scholar 

  14. Wu D, Li Y, Zhang Y, Wang P, Wei Q, Du B (2014) Electrochim Acta 116:244

    CAS  Google Scholar 

  15. Khosroshahi ME, Ghazanfari L (2012) Mater Sci Eng C 32:1043

    CAS  Google Scholar 

  16. Chen JP, Yang PC, Ma YH, Tu SJ, Lu YJ (2012) Int J Nanomed 7:5137

    CAS  Google Scholar 

  17. Yamaura M, Camilo RL, Sampaio LC, Macêdo MA, Nakamura M, Toma HE (2004) J Magn Magn Mater 279:210

    CAS  Google Scholar 

  18. Yew YP, Shameli K, Miyake M, Ahmad Khairudin NBB, Mohamad SEB, Hara H, Mad Nordin MFB, Lee KX (2017) IEEE Trans Nanotechnol 16:1047

    CAS  Google Scholar 

  19. Swain GM, Ramesham R (1993) Anal Chem 65:345

    CAS  Google Scholar 

  20. Bee RMA, Neveu S (1995) J Magn Magn Mater 149:6

    CAS  Google Scholar 

  21. Pulido D, Sánchez A, Robles J, Pedroso E, Grandas A (2009) Eur J Org Chem 2009:1398

    Google Scholar 

  22. Karabanovich G, Zemanova J, Smutny T, Szekely R, Sarkan M, Centarova I, Vocat A, Pavkova I, Conka P, Nemecek J, Stolarikova J, Vejsova M, Vavrova K, Klimesova V, Hrabalek A, Pavek P, Cole ST, Mikusova K, Roh J (2016) J Med Chem 59:2362

    CAS  PubMed  Google Scholar 

  23. Hammud HH, El-Dakdouki MH, Mohamd Sonji N, Bouhadir KH (2015) Eur J Chem 6:325

    CAS  Google Scholar 

  24. Prado C, Flechsig GU, Grundler P, Foord JS, Markenc F, Compton RG (2002) Analyst 127:329

    CAS  PubMed  Google Scholar 

  25. Sun H, Dong L, Yu H, Huo M (2013) Russ J Electrochem 49:883

    CAS  Google Scholar 

  26. Senthil Kumar CVP, Kirthika K, Sathish Kumar K (2010) Braz J Chem Eng 27:339

    Google Scholar 

  27. Langmuir I (1918) J Am Chem Soc 40:1361

    CAS  Google Scholar 

  28. Subramanyan Vasudevan JL, Vanathi R (2010) Clean: Soil, Air, Water 38:9

    Google Scholar 

  29. Kumar KY, Raj TNV, Archana S, Prasad SBB, Olivera S, Muralidhara HB (2016) J Water Process Eng 13:44

    Google Scholar 

  30. Fierro V, Torné-Fernández V, Montané D, Celzard A (2008) Microporous Mesoporous Mater 111:276

    CAS  Google Scholar 

  31. Zhan W, Xu C, Qian G, Huang G, Tang X, Lin B (2018) RSC Adv 8:18723

    CAS  Google Scholar 

  32. Bin Song JZ, Sigel H, Griesser R, Meiser C, Lippert B (1999) Chem Eur J 5:2374

    Google Scholar 

  33. Marino T, Toscano M, Russo N, Grand A (2004) Int J Quantum Chem 98:347

    CAS  Google Scholar 

  34. Dimkovikj A, Banton MJ, McDanel LA, Arndt KN, Unvert KE, Thorn EK, Marco AR, Hellmann-Whitaker RA (2017) J Inorg Biochem 171:90

    CAS  PubMed  Google Scholar 

  35. Hossain Z, Huq F (2002) J Inorg Biochem 90:97

    CAS  PubMed  Google Scholar 

  36. Hammud HH, El-Dakdouki MH, Sonji N, Sonji G, Bouhadir KH (2016) Nucleosides Nucleotides Nucleic Acids 35:259

    CAS  PubMed  Google Scholar 

  37. Sharma P, Swaika B, Millal S, Sharma RK, Sindhwani SK (2001) Indian J Chem, Sect A Inorg Bio-inorg Phys Theor Anal Chem 40A:1076

    CAS  Google Scholar 

  38. Muthaiah S, Bhatia A, Kannan M (2020). Intech Open. https://doi.org/10.5772/intechopen.90894

    Article  Google Scholar 

  39. Song Q, Li M, Huang L, Wu Q, Zhou Y, Wang Y (2013) Anal Chim Acta 787:64

    CAS  PubMed  Google Scholar 

  40. Sun YF, Chen WK, Li WJ, Jiang TJ, Liu JH, Liu ZG (2014) J Electroanal Chem 714–715:97

    Google Scholar 

  41. Fan HL, Zhou SF, Gao J, Liu YZ (2016) J Alloys Compd 671:354

    CAS  Google Scholar 

  42. Deshmukh S, Kandasamy G, Upadhyay RK, Bhattacharya G, Banerjee D, Maity D, Deshusses MA, Roy SS (2017) J Electroanal Chem 788:91

    CAS  Google Scholar 

  43. Xiong S, Wang M, Cai D, Li Y, Gu N, Wu Z (2013) Anal Lett 46:912

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the EU H2020 research and innovation program entitled Kardia Tool Grant #768686.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rita Maalouf or Nicole Jaffrezic-Renault.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 49 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawan, S., Hamze, K., Youssef, A. et al. Voltammetric study of the affinity of divalent heavy metals for guanine-functionalized iron oxide nanoparticles. Monatsh Chem 152, 229–240 (2021). https://doi.org/10.1007/s00706-021-02738-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02738-2

Keywords

Navigation