Skip to main content
Log in

Host–guest complex properties of calix[4]arene derivatives: a DFT study of adsorption and sensing of an anticancer drug, 5-fluorouracil

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In this study, it has been reported the host–guest complex properties of calix[4]arene compounds (the 3rd generation supramolecule) against the 5-fluorouracil (5-FU) anticancer drug by density functional theory calculations at room temperature. The B3LYP hybrid method was used to determine the optimized structures of the host and guest molecules and their complexes. The adsorption energy changes of the complexes formed between calix[4]arene compounds and 5-FU drug were calculated to be negative values. The strongest interaction was determined for the water-soluble calix[4]arene compound with sulfonyl (–SO3H) groups (ΔE = − 98 kJ/mol and ΔH = − 100.5 kJ/mol). Moreover, it was determined that HOMO–LUMO gaps of all calix[4]arene compounds decreased. The charge transfer has occurred between the four calix[4]arene compounds and the drug molecule. The work function values of calix[4]arene compounds have been changed. These results indicate that calix[4]arene derivatives can be used as well-suited 5-FU sensor at room temperature. Solvent effect calculations have stated that the interaction of 5-FU molecule with the calix[4]arene compound with sulfonyl (–SO3H) groups weakens and the ΔE becomes less negative value (− 71.6 kJ/mol).

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Román G, Noseda Grau E, Díaz Compañy A, Brizuela G, Juan A, Simonetti S (2018) Eur Phys J E Soft Matter 41:107

    Article  PubMed  Google Scholar 

  2. Nagarajan V, Chandiramouli R (2018) J Mol Liq 275:713

    Article  Google Scholar 

  3. Pavel I, Cota S, Kiefer W, Cinta Pinzaru S (2006) Part Sci Technol 24:301

    Article  CAS  Google Scholar 

  4. Nunes JHB, Bergamini FRG, Lustri WR, de Paiva PP, Ruiz ALTG, de Carvalho JE, Corbi PP (2017) J Fluorine Chem 195:93

    Article  CAS  Google Scholar 

  5. Macedo E, Santos MSF, Maldonado-Hódar FJ, Alves A, Madeira LM (2018) Ind Eng Chem Res 57:3932

    Article  CAS  Google Scholar 

  6. Mahnik S, Lenz K, Weissenbacher N, Mader RM, Fürhacker M (2007) Chemosphere 66:30

    Article  CAS  PubMed  Google Scholar 

  7. Toński M, Dołżonek J, Paszkiewicz M, Wojsławski J, Stepnowski P, Białk-Bielińska A (2018) Chemosphere 201:32

    Article  PubMed  Google Scholar 

  8. Gu Y, Lu R, Si D, Liu C-X (2010) Trans Tianjin Univ 16:167

    Article  CAS  Google Scholar 

  9. Smith J, Sammons D, Pretty J, Kurtz K, Robertson S, DeBord D, Connor T, Snawder J (2015) J Oncol Pharm Pract 22:396

    Article  PubMed  PubMed Central  Google Scholar 

  10. Farquharson S, Gift A, Shende C, Maksymiuk P, Inscore F, Murran J (2005) Vib Spectrosc 38:79

    Article  CAS  Google Scholar 

  11. Amer M, Hassan S, El-Fatah S, El-Kosasy A (1998) J Pharm Pharmacol 50:133

    Article  CAS  PubMed  Google Scholar 

  12. Barberi-Heyob M, Merlin JL, Weber B (1992) J Chromatogr B Biomed Sci Appl 581:281

    Article  CAS  Google Scholar 

  13. Chu D, Gu J, Liu W, Paul Fawcett J, Dong Q (2003) J Chromatogr B Analyt Technol Biomed Life Sci 795:377

    Article  CAS  PubMed  Google Scholar 

  14. Hua X, Hou X, Gong X, Shen G (2013) Anal Methods 5:2470

    Article  CAS  Google Scholar 

  15. Zhan T, Cao L, Sun W, Hou W (2011) Anal Methods 3:2651

    Article  CAS  Google Scholar 

  16. Mirceski V, Gulaboski R, Jordanoski B, Komorsky-Lovrić Š (2000) J Electroanal Chem 490:37

    Article  CAS  Google Scholar 

  17. Selvaraj V, Alagar M (2007) Int J Pharm 337:275

    Article  CAS  PubMed  Google Scholar 

  18. Zahed F, Hatamluyi B, Lorestani F, Es’haghi Z (2018) J Pharm Biomed Anal 161:12

    Article  CAS  PubMed  Google Scholar 

  19. Hashemzadeh H, Raissi H (2018) J Phys D Appl Phys 51:345401

    Article  Google Scholar 

  20. Abukhadra M, Refay N, El-Sherbeeny A, Mostafa A, Elmeligy M (2019) Int J Biol Macromol 141:721

    Article  CAS  PubMed  Google Scholar 

  21. El-Zeiny HM, Abukhadra MR, Sayed OM, Osman AHM, Ahmed SA (2020) Colloids Surf A 586:124197

    Article  CAS  Google Scholar 

  22. Miralinaghi P, Kashani P, Monir E, Miralinaghi M (2019) Mater Res Express 6:065305

    Article  CAS  Google Scholar 

  23. Nayak AK, Ahmad SA, Beg S, Ara TJ, Hasnain MS (2018). In: Inamuddin, Asiri AM, Mohammad A (eds) Applications of nanocomposite materials in drug delivery, 2nd edn. Woodhead Publishing, Cambridge, p 255

    Chapter  Google Scholar 

  24. Ma X, Zhao Y (2015) Chem Rev 115:7794

    Article  CAS  PubMed  Google Scholar 

  25. Geng W, Huang Q, Xu Z, Wang R, Guo D-S (2019) Theranostics 9:3094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang J, Liu C, Shuai Y, Cui X, Nie L (2013) Colloids Surf B 113C:223

    Article  Google Scholar 

  27. Shariatinia Z, Shahidi S (2014) J Mol Graph Modell 52:71

    Article  CAS  Google Scholar 

  28. Shariatinia Z, Jalali AM (2018) Int J Biol Macromol 115:194

    Article  CAS  PubMed  Google Scholar 

  29. Nikfar Z, Shariatinia Z (2017) Physica E Low Dimens Syst Nanostruct 91:41

    Article  CAS  Google Scholar 

  30. Vatanparast M, Shariatinia Z (2018) J Fluorine Chem 211:81

    Article  CAS  Google Scholar 

  31. Sin K-R, Ko S-G, Kim C-J, Pak S-H, Kim H-C, Kim C-U (2020) Monatsh Chem 151:721

    Article  CAS  Google Scholar 

  32. Vatanparast M, Shariatinia Z (2019) J Mol Graph Modell 89:50

    Article  CAS  Google Scholar 

  33. Vatanparast M, Shariatinia Z (2018) Struct Chem 29:1427

    Article  CAS  Google Scholar 

  34. Karimidost S, Moniri E, Miralinaghi M (2019) Korean J Chem Eng 36:1115

    Article  CAS  Google Scholar 

  35. Li L, Jiang X, Wang H, Wu H, Lv J, Jameh-Bozorghi S (2020) Physica E Low Dimens Syst Nanostruct 117:113852

    Article  CAS  Google Scholar 

  36. Zaboli A, Raissi H, Farzad F, Hashemzadeh H (2020) J Mol Liq 301:112435

    Article  CAS  Google Scholar 

  37. Shayan K, Nowroozi A (2018) Appl Surf Sci 428:500

    Article  CAS  Google Scholar 

  38. Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H (2012) Pharmacol Rep 64:1020

    Article  CAS  PubMed  Google Scholar 

  39. Nadimi A, Ebrahimipour S, Afshar E, Khanamani Falahati-Pour S, Ahmadi Z, Mohammadinejad R, Mohamadi M (2018) Eur J Med Chem 157:1153

    Article  CAS  PubMed  Google Scholar 

  40. Tian H, Liu Y-C, Guo D-S (2020) Mater Chem Front 4:46

    Article  CAS  Google Scholar 

  41. Wang G, Chen G, Wei Z, Dong X, Qi M (2013) Mater Chem Phys 141:997

    Article  CAS  Google Scholar 

  42. Jin L, Liu Q, Sun Z, Ni X, Wei M (2010) Ind Eng Chem Res 49:11176

    Article  CAS  Google Scholar 

  43. Wazzan N, Soliman K, Abdel Halim W (2019) J Mol Model 25:265

    Article  PubMed  Google Scholar 

  44. Soltani A, Baei MT, Tazikeh E, Kaveh S, Balakheyli H (2015) J Phys Chem Solids 86:57

    Article  CAS  Google Scholar 

  45. Akpinar M, Temel F, Tabakci B, Ozcelik E, Tabakcı M (2019) Anal Biochem 583:113373

    Article  CAS  PubMed  Google Scholar 

  46. Liu C, Pei W-Y, Li J-F, Yang J, Ma J-F (2020) Sens Actuators B 308:127677

    Article  CAS  Google Scholar 

  47. Sharma N, Kakkar R, Bansal P, Singh A, Ojha H, Pathak D, Kumar R (2019) Inorg Chim Acta 484:111

    Article  CAS  Google Scholar 

  48. Du L-J, Jiao Y-H, Ye L-H, Fei T-H, Wang Q-Y, Hu Y-H, Cao J, Zhang Q-D, Peng L-Q, Chen Y-B (2018) Food Anal Methods 11:1

    Article  Google Scholar 

  49. Chen M, Zhang W, Jiang R, Diao G (2011) Anal Chim Acta 687:177

    Article  CAS  PubMed  Google Scholar 

  50. Nie R, Chang X, He Q, Hu Z, Li Z (2009) J Hazard Mater 169(1):203

    Article  CAS  PubMed  Google Scholar 

  51. Temel F (2020) J Mol Liq 297:111818

    Article  CAS  Google Scholar 

  52. Temel F, Tabakci M (2016) Talanta 153:221

    Article  CAS  PubMed  Google Scholar 

  53. de Fátima Â, Fernandes S, Sabino A (2009) Curr Drug Discov Technol 6:151

    Article  PubMed  Google Scholar 

  54. Moussa Y, Natarajan Sathiyamoorthy V, Wheate N (2020) J Incl Phenom Macrocycl Chem 96:145

    Article  CAS  Google Scholar 

  55. An L, Wang J-W, Liu J-D, Zhao Z-M, Song Y-J (2019) Front Chem 7:732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Renziehausen A, Tsiailanis A, Perryman R, Stylos E, Chatzigiannis C, O’Neill K, Crook T, Tzakos A, Syed N (2019) Mol Cancer Ther 18:1497

    Article  CAS  PubMed  Google Scholar 

  57. Rahimi M, Karimian R, Noruzi E, Ganbarov K, Zarei M, Kamounah F, Yousefi B, Bastami M, Yousefi M, Kafil H (2019) Int J Nanomed 14:2619

    Article  CAS  Google Scholar 

  58. Shetty D, Skorjanc T, Olson MA, Trabolsi A (2019) ChemComm 55:8876

    CAS  Google Scholar 

  59. Pinalli R, Pedrini A, Dalcanale E (2018) Chem Soc Rev 47:7006

    Article  CAS  PubMed  Google Scholar 

  60. Ahmadi F, Raoof JB, Ojani R, Baghayeri M, Lakouraj MM, Tashakkorian H (2015) Chin J Catal 36:439

    Article  CAS  Google Scholar 

  61. Song S, Shang X, Zhao J, Hu X, Koh K, Wang K, Chen H (2018) Sens Actuators B 267:357

    Article  CAS  Google Scholar 

  62. Dang J, Cui H, Li X, Zhang J (2019) Anal Sci 35:979

    Article  CAS  PubMed  Google Scholar 

  63. Liu N, Fan Y, Ma Z, Lin H, Xu J (2020) Chin Chem Lett 31:2129

    Article  CAS  Google Scholar 

  64. Fahem DK, El Houssini OM, Abd El-Rahman MK, Zaazaa HE (2019) Talanta 196:137

    Article  CAS  PubMed  Google Scholar 

  65. Mousavi M, El-Rahman M, Mahmoud A, Abdelsalam R, Buhlmann P (2018) ACS Sens 3:2581

    Article  CAS  PubMed  Google Scholar 

  66. Zare K, Shadmani N, Pournamdari E (2013) J Nanostruct Chem 3:75

    Article  Google Scholar 

  67. Fellah MF (2019) Int J Hydrog Energy 44:27010

    Article  CAS  Google Scholar 

  68. Demir S, Fellah MF (2020) Appl Surf Sci 504:144141

    Article  CAS  Google Scholar 

  69. Ahmadi A, Hadipour NL, Kamfiroozi M, Bagheri Z (2012) Sens Actuators B 161:1025

    Article  CAS  Google Scholar 

  70. Hadipour N, Ahmadi Peyghan A, Soleymanabadi H (2015) J Phys Chem C 119:6398

    Article  CAS  Google Scholar 

  71. Ahmadi Peyghan A, Hadipour N, Bagheri Z (2013) J Phys Chem C 117:2427

    Article  CAS  Google Scholar 

  72. Eslami M, Vahabi V, Ahmadi Peyghan A (2016) Physica E Low Dimens Syst Nanostruct 76:6

    Article  CAS  Google Scholar 

  73. Li L, Zhao J (2020) J Mol Liq 306:112926

    Article  CAS  Google Scholar 

  74. Korotcenkov G (2013) Handbook of gas sensor materials sensing layers in work-function-type gas sensors. Springer, New York, p 377

    Book  Google Scholar 

  75. Li M, Wei Y, Zhang G, Wang F, Li M, Soleymanabadi H (2020) Physica E Low Dimens Syst Nanostruct 118:113878

    Article  CAS  Google Scholar 

  76. Saedi L, Javanshir Z, Khanahmadzadeh S, Maskanati M, Nouraliei M (2020) Mol Phys 118:e1658909

    Article  Google Scholar 

  77. Liu Y, Liu C, Kumar A (2020) Mol Phys 118:e1798528

    Article  Google Scholar 

  78. Sjoberg P, Politzer P (1990) J Phys Chem 94:3959

    Article  CAS  Google Scholar 

  79. Yu G, Lyu L, Zhang F, Yan D, Cao W, Hu C (2018) RSC Adv 8:3312

    Article  CAS  Google Scholar 

  80. Teixidor F, Barberà G, Puga A, Kivekäs R, Sillanpää R, Oliva J, Viñas C (2005) J Am Chem Soc 127:10158

    Article  CAS  PubMed  Google Scholar 

  81. Fuentealba P, Chamorro E, Santos JC (2007). In: Toro-Labbé A (ed) Understanding and using the electron localization function Theoretical and Computational Chemistry, vol 19. Elsevier, Amsterdam, p 57

    Google Scholar 

  82. Rahmani Z, Edjlali L, Vessaly E, Hosseinian A, Nezhad PDK (2020) J Sulfur Chem 41:483

    Article  CAS  Google Scholar 

  83. Baerends E (2000) Theor Chem Acc 103:265

    Article  CAS  Google Scholar 

  84. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2014) Gaussian 09 Revision E.01. Gaussian Inc, Wallingford

    Google Scholar 

  85. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  86. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  87. Yuksel N, Kose A, Fellah MF (2020) Int J Hydrog Energy 45:34983

    Article  CAS  Google Scholar 

  88. Rad AS, Sani E, Binaeian E, Peyravi M, Jahanshahi M (2017) Appl Surf Sci 401:156

    Article  Google Scholar 

  89. Farrokhpour H, Jouypazadeh H (2017) Chem Phys 488:1

    Article  Google Scholar 

  90. Mohammadi MD, Abdullah HY (2021) Comput Theor Chem 1193:113047

    Article  Google Scholar 

  91. Tayebee R, Nasr AH (2020) J Mol Liq 319:114357

    Article  CAS  Google Scholar 

  92. Foresman J, Frish E (1996) Exploring chemistry with electronic structure methods. Gaussian Inc, Pittsburg

    Google Scholar 

  93. Thermochemistry in Gaussian (2000) Gaussian Inc. http://gaussian.com/thermo/. Accessed 21 Jun 2017

  94. Pearson RG (2005) J Chem Sci 117:369

    Article  CAS  Google Scholar 

  95. Pearson RG (1992) J Mol Struct 255:261

    Article  Google Scholar 

  96. Lu T, Chen F (2012) J Comput Chem 33:580

    Article  PubMed  Google Scholar 

  97. O’Boyle N, Tenderholt A, Langner K (2008) J Comput Chem 29:839

    Article  CAS  PubMed  Google Scholar 

  98. Mulliken RS (1955) J Chem Phys 23:1833

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The numerical-calculations reported in this paper were partially performed at TUBITAK-ULAKBIM, High-Performance and Grid-Computing-Center-(TRUBA resources).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ferdi Fellah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuksel, N., Fellah, M.F. Host–guest complex properties of calix[4]arene derivatives: a DFT study of adsorption and sensing of an anticancer drug, 5-fluorouracil. Monatsh Chem 152, 217–228 (2021). https://doi.org/10.1007/s00706-021-02736-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02736-4

Keywords

Navigation