Skip to main content
Log in

Speciation of antimony in anti-leishmanial drug using two different chemical receptors and adsorptive anodic stripping voltammetry on glassy carbon electrode

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

This paper describes an application and comparison of two stripping voltammetric methods for the speciation of antimony. These methods are based on the formation of the antimony complexes in the presence of two separate chemical receptors, rivastigmine and hematoxylin, and their accumulation on a glassy carbon electrode. They were utilized for the first time to determine Sb(III) and Sb(V) in meglumine antimonite used in the treatment of leishmaniasis. For this purpose, first, the peak current of Sb(III) for a certain amount of drug sample was separately measured using two different receptors. Then, for the same amount of sample, the peak current of total antimony was separately determined in the presence of each receptor by standard addition method after the reduction of Sb(V) ions to Sb(III) with ʟ-cysteine. The current value of Sb(V) was calculated by subtracting the peak current of Sb(III) from that of total antimony for each addition. Then, the calibration curves for the current values of Sb(V) and total antimony were plotted, and the concentrations of Sb(V) and total antimony were determined. The Sb(III) concentration was calculated from the difference between these two values. The Sb(III) and Sb(V) contents were found 16.99 and 82.93 mg cm−3 in the presence of rivastigmine, and 16.59 and 77.96 mg cm−3 in the presence of hematoxylin, respectively. These results showed that both methods were successfully applied to determine Sb(III) and Sb(V) in meglumine antimonite.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Andrade JK, Andrade CK, Felsner ML, Quináia SP, Anjos VE (2017) Microchem J 133:222

    Article  Google Scholar 

  2. WHO (2019) https://www.who.int/news-room/fact-sheets/detail/leishmaniasis. Accessed 08 Oct 2020

  3. WHO (2010) Control of the leishmaniases: report of a meeting of the WHO expert commitee on the control of leishmaniases, Geneva, 22–26 March 2010

  4. Trivelin LA, Rohwedder JJR, Rath S (2006) Talanta 68:1536

    Article  CAS  Google Scholar 

  5. Renedo OD, Martínez MJA (2007) Electrochem Commun 9:820

    Article  CAS  Google Scholar 

  6. Renedo OD, González MJG, Martínez MJA (2009) Sensors 9:219

    Article  Google Scholar 

  7. González MJG, Renedo OD, Martínez MJA (2007) Talanta 71:691

    Article  Google Scholar 

  8. Santos VS, Santos WJR, Kubota LT, Tarley CRT (2009) J Pharm Biomed Anal 50:151

    Article  CAS  Google Scholar 

  9. Salaün P, Frézard F (2013) Anal Bioanal Chem 405:5201

    Article  Google Scholar 

  10. Gadhari NS, Sanghavi BJ, Srivastava AK (2011) Anal Chim Acta 703:31

    Article  CAS  Google Scholar 

  11. Zarei K, Atabati M, Karami M (2009) Anal Chim Acta 649:62

    Article  CAS  Google Scholar 

  12. González MJG, Renedo OD, Martínez MJA (2005) Talanta 68:67

    Article  Google Scholar 

  13. Vinhal JO, Gonçalves AD, Cruz GFB, Cassella RJ (2016) Talanta 150:539

    Article  CAS  Google Scholar 

  14. Cabral LM, Juliano VNM, Dias LRS, Dornelas CB, Rodrigues CR, Villardi M, Castro HC, Santos TC (2008) Mem Inst Oswaldo Cruz 103:130

    Article  CAS  Google Scholar 

  15. Łukaszczyk L, Żyrnicki W (2010) J Pharm Biomed Anal 52:747

    Article  Google Scholar 

  16. Séby F, Gleyzes C, Grosso O, Plau B, Donard OFX (2012) Anal Bioanal Chem 404:2939

    Article  Google Scholar 

  17. Renedo OD, Martínez MJA (2007) Anal Chim Acta 589:255

    Article  Google Scholar 

  18. Frizzarin RM, Portugal LA, Estela JM, Rocha FRP, Cerdà V (2016) Talanta 148:694

    Article  CAS  Google Scholar 

  19. Cardozo MC, Cavalcante DD, Silva DLF, Santos WNL, Bezerra MA (2016) An Acad Bras Ciênc 88:1

    Article  Google Scholar 

  20. Ferreira SLC, Anjos JP, Felix CSA, Silva Junior MM, Palacio E, Cerda V (2019) Trends Anal Chem 110:335

    Article  Google Scholar 

  21. Fang H, Zhang J, Zhou S, Dai W, Li C, Du D, Shen X (2015) Sens Actuators B 210:113

    Article  CAS  Google Scholar 

  22. Karabiberoğlu ŞU, Dursun Z (2017) Electroanalysis 29:1069

    Article  Google Scholar 

  23. Rojas-Romo C, Arancibia V (2015) Electroanalysis 27:1262

    Article  CAS  Google Scholar 

  24. Hamza A, Alsaggaf WT, Ahmad W, El-Shahawi MS (2020) Chem Pap 74:2917

    Article  CAS  Google Scholar 

  25. Barek J, Peckova K, Vyskocil V (2008) Curr Anal Chem 4:242

    Article  CAS  Google Scholar 

  26. Postupolski A, Golimowski J (1991) Electroanalysis 3:793

    Article  CAS  Google Scholar 

  27. Laintz KE, Shieh GM, Wai CM (1992) J Chromatogr Sci 30:120

    Article  CAS  Google Scholar 

  28. Miravet R, López-Sánchez JF, Rubio R (2004) Anal Chim Acta 511:295

    Article  CAS  Google Scholar 

  29. Vardar HS, Gökçel HI, Dilgin Y (2015) Sens Actuators B 209:686

    Article  Google Scholar 

  30. Vardar HS, Dilgin Y, Gökçel HI (2017) Talanta 164:677

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ege University Research Foundation (Project No: 11-FEN-90) for funding this project, and also to thank the members of the thesis committee, Dr. Ümran Yüksel, Dr. Sibel Kılınç Alpat, and Dr. Müşerref Arda for their valuable suggestions throughout the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanife Vardar Sezgin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vardar Sezgin, H., Dilgin, Y. & Gökçel, H.İ. Speciation of antimony in anti-leishmanial drug using two different chemical receptors and adsorptive anodic stripping voltammetry on glassy carbon electrode. Monatsh Chem 152, 201–208 (2021). https://doi.org/10.1007/s00706-020-02731-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02731-1

Keywords

Navigation