Skip to main content

Advertisement

Log in

Tuning electronic properties of bilayer α2-graphyne by external electric field: a density functional theory study

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The structural and electronic properties of bilayer α2-graphyne under electric field are investigated using density functional theory. The results showed that monolayer and bilayer α2-graphyne are zero-gap semiconductors. The external electric field has a considerable effect on the energy band gap of bilayer α2-graphyne. The energy band gap of bilayer α2-graphyne increases with the increase in the applied electric field. The electric field perpendicular to the sheet opens the band gap up to 0.18 eV. Our finding opens up a possibility for designing graphyne based electronic devices which exhibit a controllable band gap.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  CAS  PubMed  Google Scholar 

  2. Zhang YB, Tan YW, Stormer HL, Kim P (2005) Nature 438:201

    Article  CAS  PubMed  Google Scholar 

  3. Aufray B, Kara A, Vizzini S, Oughaddou H, Léandri C, Ealet B, Lay GL (2010) Appl Phys Lett 96:183102

    Article  CAS  Google Scholar 

  4. Feng BJ, Ding ZJ, Meng S, Yao YG, He XY, Cheng P, Chen L, Wu KH (2012) Nano Lett 12:3507

    Article  CAS  PubMed  Google Scholar 

  5. Liu CC, Feng WX, Yao YG (2011) Phys Rev Lett 107:076802

    Article  PubMed  CAS  Google Scholar 

  6. Kubota Y, Watanabe K, Tsuda O, Taniguchi T (2007) Science 317:932

    Article  CAS  PubMed  Google Scholar 

  7. Gorbachev RV, Riaz I, Nair RR, Jalil R, Britnell L, Belle BD, Hill EW, Novoselov KS, Watanabe K, Taniguchi T, Geim AK, Blake P (2011) Small 7:465

    Article  CAS  PubMed  Google Scholar 

  8. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) Rev Mod Phys 81:109

    Article  CAS  Google Scholar 

  9. Kumar A, Sharma K, Rai Dixit A (2019) J Mater Sci 54:5992

    Article  CAS  Google Scholar 

  10. Balandin AA (2011) Nat Mater 10:569

    Article  CAS  PubMed  Google Scholar 

  11. Ren S, Rpng P, Yu Q (2018) Ceram Int 44:11940

    Article  CAS  Google Scholar 

  12. Coros M, Pogacean F, Magerusan L, Socaci C, Pruneanu S (2019) Front Mater Sci 13:23

    Article  Google Scholar 

  13. Charlier JC, Eklund PC, Zhu J, Ferrari AC, Jorio A, Dresselhaus G, Dresselhaus MS (2008) Electron and phonon properties of graphene: their relationship with carbon nanotubes. Carbon nanotubes: advanced topics in the synthesis, structure, properties and applications. Springer, Berlin

    Google Scholar 

  14. Baughman RH, Eckhardt H, Kertesz M (1987) J Chem Phys 87:6687

    Article  CAS  Google Scholar 

  15. Kim H, Kim Y, Kim J, Kim WY (2016) Carbon 98:404

    Article  CAS  Google Scholar 

  16. Malko D, Neiss C, Vines F, Gorling A (2012) Phys Rev Lett 108:086804

    Article  PubMed  CAS  Google Scholar 

  17. Majidi R (2013) Nano Brief Rep Rev 8:1350060

    Google Scholar 

  18. Xia FN, Farmer DB, Lin YM, Avouris P (2010) Nano Lett 10:715

    Article  CAS  PubMed  Google Scholar 

  19. Osella S, Narita A, Schwab MG, Hernandez Y, Feng X, Mllen K, Beljonne D (2012) ACS Nano 6:5539

    Article  CAS  PubMed  Google Scholar 

  20. Singh NB, Bhattacharya B, Sarkar U (2014) Struct Chem 25:1695

    Article  CAS  Google Scholar 

  21. Majidi R (2016) Can J Chem 94:229

    Article  CAS  Google Scholar 

  22. Kaplan D, Swaminathan V, Recine G, Balu R, Karna S (2013) J Appl Phys 113:183701

    Article  CAS  Google Scholar 

  23. Sainsbury T, Passarelli M, Naftaly M, Gnaniah S, Spencer SJ, Pollard AJ (2016) Appl Mater Interfaces 8:4870

    Article  CAS  Google Scholar 

  24. Wu W, Guo W, Zeng XC (2013) Nanoscale 5:9264

    Article  CAS  PubMed  Google Scholar 

  25. Bhattacharya B, Sarkar U, Seriani N (2016) J Phys Chem C 120:26579

    Article  CAS  Google Scholar 

  26. Hang Y, Wu W, Yu J, Guo WL (2016) Chin Phys B 25:023102

    Article  CAS  Google Scholar 

  27. Majidi R, Ghafoori Tabrizi K (2011) Fuller Nanotub Carbon Nanostruct 19:532

    Article  CAS  Google Scholar 

  28. Behera H, Mukhopadhyay G (2012) J Phys Chem Solids 73:818

    Article  CAS  Google Scholar 

  29. Nigam S, Gupta SK, Majumder C, Pandey R (2015) Phys Chem Chem Phys 17:11324

    Article  CAS  PubMed  Google Scholar 

  30. Peres NMR (2009) Vacuum 83:1248

    Article  CAS  Google Scholar 

  31. Castro EV, Novoselov KS, Morozov SV, Peres NMR, Lopes dos Santos JMB, Nilsson J, Guinea F, Geim AK, Castro Neto AH (2010) J Phys Condens Matter 22:175503

    Article  PubMed  CAS  Google Scholar 

  32. Yun J, Zhang Y, Ren Y, Xu M, Yan J, Zhao W, Zhang Z (2018) Phys Chem Chem Phys 42:26934

    Article  Google Scholar 

  33. Majidi R, Karami AR (2014) Struct Chem 25:853

    Article  CAS  Google Scholar 

  34. Yan K, Peng H, Zhou Y, Li H, Liu Z (2011) Nano Lett 11:1106

    Article  CAS  PubMed  Google Scholar 

  35. Leenaerts O, Partoens B, Peeters FM (2013) Appl Phys Lett 103:013105

    Article  CAS  Google Scholar 

  36. Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E (2006) Science 313:951

    Article  CAS  PubMed  Google Scholar 

  37. McCann E, Koshino M (2013) Rep Prog Phys 76:056503

    Article  PubMed  CAS  Google Scholar 

  38. Shin H, Kim J, Lee H, Heinonen O, Benali A, Kwon Y (2017) J Chem Theory Comput 13:5639

    Article  CAS  PubMed  Google Scholar 

  39. Zakharchenko KV, Los JH, Katsnelson MI, Fasolino A (2010) Phys Rev B 81:235439

    Article  CAS  Google Scholar 

  40. Zhang YY, Wang CM, Cheng Y, Xiang Y (2011) Carbon 49:4511

    Article  CAS  Google Scholar 

  41. Novoselov KS, McCann E, Morozov SV, Falko VI, Katsnelson MI, Zeitler U, Jiang D, Schedin F, Geim AK (2006) Nat Phys 2:177

    Article  CAS  Google Scholar 

  42. McCann E, Falko VI (2006) Phys Rev Lett 96:086805

    Article  PubMed  CAS  Google Scholar 

  43. Nulakani NVR, Subramanian V (2016) J Phys Chem C 120:15153

    Article  CAS  Google Scholar 

  44. Majidi R (2018) J Electron Mater 4:2890

    Article  CAS  Google Scholar 

  45. Majidi R (2017) Phys E 90:189

    Article  CAS  Google Scholar 

  46. Ramalho JPP, Gomes JRB, Illasc F (2013) RSC Adv 3:13085

    Article  CAS  Google Scholar 

  47. Guinea F, Castro Neto AH, Peres NMR (2006) Phys Rev B 73:245426

    Article  CAS  Google Scholar 

  48. Castro EV, Novoselov KS, Morozov SV, Peres NMR, Lopes dos Santos JMB, Nilsson J, Guinea F, Geim AK, Castro Neto AH (2007) Phys Rev B 99:216802

    Google Scholar 

  49. Ozaki T, Kino H, Yu J, Han MJ, Kobayashi N, Ohfuti M, Ishii F. User’s manual of OpenMX version 3.8. http://www.openmx-square.org

  50. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  PubMed  Google Scholar 

  51. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  PubMed  CAS  Google Scholar 

  52. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456

    Article  CAS  PubMed  Google Scholar 

  53. Morrison I, Bylander DM, Kleinman L (1993) Phys Rev B 47:6728

    Article  CAS  Google Scholar 

  54. Vanderbilt D (1990) Phys Rev B 41:7892

    Article  CAS  Google Scholar 

  55. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by Shahid Rajaee Teacher Training University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roya Majidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3873 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majidi, R., Sarkar, U. Tuning electronic properties of bilayer α2-graphyne by external electric field: a density functional theory study. Monatsh Chem 152, 61–66 (2021). https://doi.org/10.1007/s00706-020-02723-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02723-1

Keywords

Navigation