Skip to main content
Log in

Mercury isles in titanate nanotubes: a new strategy for using mercury electrodes in analytical application

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

This work reports for the first time the use of titanate nanotubes (TiNT) as adsorbent structure for Hg2+ ions and its use in construction of mercury-based electrodes for analytical applications. TiNTs with diameter of around 15 nm and length between 40 and 200 nm were obtained by hydrothermal alkaline synthesis and characterized by FTIR, DRX, and TEM. A carbon paste electrode modified with 15% (w/w) of TiNT was used for spontaneous mercury ions incorporation, by simply immerging in a Hg2+ solution for 120 s. “Mercury isles” were obtained by electrochemical reduction of adsorbed Hg2+ ions. Under the best optimized conditions, the proposed device was evaluated for the determination of Zn2+ ions in pharmaceutical samples. A linear relationship of anodic peak current and Zn2+ ions concentration was observed at a range of 4.0–20 µmol dm−3, with sensitivity of 0.54 μA dm3 μmol−1, limit of detection and limit of quantification of 1.2 µmol dm−3 and 4.0 µmol dm−3, respectively. Satisfactory agreement with a comparative method showed the useful application of the sensor, with the advantage of the Zn preconcentration step at open circuit potential condition. This strategy allows the use of several electrodes at the same time, which characterize this device as a feasible passive sampler.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bavykin DV, Carravetta M, Kulak AN, Walsh FC (2010) Chem Mater 22:2458

    Article  CAS  Google Scholar 

  2. Abdullah M, Kamarudin SK (2017) Renew Sustain Energy Rev 76:212

    Article  CAS  Google Scholar 

  3. Han CH, Hong DW, Kim IJ, Gwak J, Han SD, Singhb KC (2007) Sens Actuators B Chem 128:320

    Article  CAS  Google Scholar 

  4. Mahlambi MM, Ngila CJ, Mamba BB (2015) J Nanomater 2015:790173

    Article  Google Scholar 

  5. Zhao R, Liu X, Zhang J, Zhu J, Wong DKY (2015) Electrochim Acta 163:64

    Article  CAS  Google Scholar 

  6. Yang M, Wang J, Li H, Zheng JG, Wu NN (2008) Nanotechnology 19:075502

    Article  Google Scholar 

  7. Sheng G, Yang S, Sheng J, Zhao D, Wang X (2011) Chem Eng J 168:178

    Article  CAS  Google Scholar 

  8. Souza JS, Carvalho-Jr WM, Souza FL, Ponce-de-Leon C, Bavykin DV, Alves WA (2016) J Mater Chem A 4:944

    Article  CAS  Google Scholar 

  9. Etienne M, Bessiere J, Walcarius A (2001) Sens Actuators B Chem 76:531

    Article  CAS  Google Scholar 

  10. Oliveira PR, Lamy-Mendes AC, Rezende EIP, Mangrich AS, Marcolino-Junior LH, Bergamini MF (2015) Food Chem 171:426

    Article  CAS  Google Scholar 

  11. Al-Harbi EA, El-Shahawi MS (2018) Electroanalysis 30:1837

    Article  Google Scholar 

  12. Biçer E, Arat C (2008) J Chil Chem Soc 53:1734

    Article  Google Scholar 

  13. Heyrovský J, Kůta J (2013) Principles of polarography. Elsevier, Amsterdam

    Google Scholar 

  14. Gajdar J, Horakova E, Barek J, Fischer J, Vyskočil V (2016) Electroanalysis 28:2659

    Article  CAS  Google Scholar 

  15. Vyskočil V, Barek J (2009) Crit Rev Anal Chem 39:173

    Article  Google Scholar 

  16. Kudr J, Nguyen HV, Gumulec J, Nejdl L, Blazkova I, Ruttkay-Nedecky B, Hynek D, Kynicky J, Adam V, Kizek R (2014) Sensors (Switzerland) 15:592

    Article  Google Scholar 

  17. Temerk Y, Ibrahim M, Ibrahim H, Kotb M (2016) J Electroanal Chem 760:135

    Article  CAS  Google Scholar 

  18. Hambidge KM, Miller LV, Westcott JE, Krebs NF (2008) J Nutr 138:2363

    Article  CAS  Google Scholar 

  19. Jen M, Yan AC (2010) Clin Dermatol 28:669

    Article  Google Scholar 

  20. Chaiyo S, Mehmeti E, Žagar K, Siangproh W, Chailapakul O, Kalcher K (2016) Anal Chim Acta 918:26

    Article  CAS  Google Scholar 

  21. Lu Z, Zhang J, Dai W, Lin X, Ye J, Ye J (2017) Microchim Acta 184:4731

    Article  CAS  Google Scholar 

  22. JCPDS-International Center for Diffraction Data, PDF 21-1272

  23. JCPDS-International Center for Diffraction Data, PDF 00-047-0124

  24. Viana BC, Ferreira OP, Souza Filho AG, Hidalgo AA, Mendes-Filho J, Alves OL (2009) J Braz Chem Soc 20:167

    Article  CAS  Google Scholar 

  25. Booij K, Vrana B, Huckins JN (2007) Compr Anal Chem 48:141

    Article  CAS  Google Scholar 

  26. de Oliveira PR, Lamy-Mendes AC, Gogola JL, Mangrich AS, Marcolino-Junior LH, Bergamini MF (2015) Electrochim Acta 151:525

    Article  CAS  Google Scholar 

  27. Shahbazi Y, Ahmadi F, Fakhari F (2016) Food Chem 192:1060

    Article  CAS  Google Scholar 

  28. Švancara I, Pravda M, Hvizdalová M, Vytřas K, Kalcher K (1994) Electroanalysis 6:663

    Article  Google Scholar 

  29. Da Silva CL, Masini JC (2000) Fresenius J Anal Chem 367:284

    Article  Google Scholar 

  30. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Langmuir 14:3160

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Araucária and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Humberto Marcolino-Junior.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bindewald, E.H., Angelo, E., Kleinert, E. et al. Mercury isles in titanate nanotubes: a new strategy for using mercury electrodes in analytical application. Monatsh Chem 151, 1485–1491 (2020). https://doi.org/10.1007/s00706-020-02691-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02691-6

Keywords

Navigation