Skip to main content
Log in

Influence of halogens on organometallic open pentadienyl lanthanum complexes XLa(C5H7)2 (X = H, F–I)

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The electron and structural understanding of metal-coordinated pentadienyl ligands is essential for their subsequent use in different areas of chemistry, especially in the area of organometallic chemistry. Thus, in this work we have analyzed in gas-phase the influence of group 17 elements in complexes formed with the lanthanum atom and the open pentadienyl ligand, XLa(C5H7)2, where X = H, F, Cl, Br, and I. The results, using density functional theory (PBE0/def2-TZVP) and NBO analysis, suggest that all carbon atoms of both ligands are η5 coordinated to the lanthanum atom, and X atoms play a very important role in affecting the electron transfer from the ligands to the central atom due to their electronegativity. In addition, the NBO analysis and the geometry of each structure suggest that the atoms that contribute the most as charge donors to the lanthanum atom are those at the center of the pentadienyl ligand. Energies were computed with the domain based local pair-natural orbital coupled-cluster (DLPNO-CCSD(T)) method.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Budzelaar PHM, Engelberts JJ, Van Lenthe JH (2003) Organometallics 22:1562

    Article  CAS  Google Scholar 

  2. Chirik PJ (2010) Organometallics 29:1500

    Article  CAS  Google Scholar 

  3. Ernst RD (1985) Acc Chem Res 18:56

    Article  CAS  Google Scholar 

  4. Ernst RD (1988) Chem Rev 88:1255

    Article  CAS  Google Scholar 

  5. Ernst RD (1999) Comment Inorg Chem 21:285

    Article  CAS  Google Scholar 

  6. Jutzi P (1986) Chem Rev 86:983

    Article  CAS  Google Scholar 

  7. Jutzi P, Burford N (1999) Chem Rev 99:969

    Article  CAS  Google Scholar 

  8. Long NJ (1998) Metallocenes: an introduction to sandwich complexes. Wiley, Oxford

    Google Scholar 

  9. Mooßen O, Dolg M (2015) Comput Theor Chem 1073:34

    Article  Google Scholar 

  10. Poli R (1991) Chem Rev 91:509

    Article  CAS  Google Scholar 

  11. Powell P (1986) Adv Organomet Chem 26:125

    Article  CAS  Google Scholar 

  12. Ravinder P, Subramanian V (2012) Comput Theor Chem 998:106

    Article  CAS  Google Scholar 

  13. Davies SG (1989) Organotransition metal chemistry: applications to organic synthesis. Pergamon Press/University of Oxford, Oxford

    Google Scholar 

  14. Donalson WA, Chaudhury S (2009) Eur J Chem 3831

  15. Edelmann FT (1996) Top Curr Chem 179:247

    Article  CAS  Google Scholar 

  16. Enders M, Kohl G, Pritzkow H (2004) Organometallics 23:3832

    Article  CAS  Google Scholar 

  17. Kendall C, Negishi E, Kanno K, Kotora M, Suzuki N, Wipf P, Takahashi T, Tan T, Xi Z, Li Z (2005) Metallocenes in regio- and stereoselective synthesis. Springer, Berlin

    Google Scholar 

  18. Köpf-Maier P, Köpf H (1988) Transition and main-group metal cyclopentadienyl complexes: preclinical studies on a series of antitumor agents of different structural type. In: Bioinorganic chemistry, structure and bonding. Springer, Berlin

  19. Ye B, Cramer N (2012) Science 338:504

    Article  CAS  Google Scholar 

  20. Li A, Wang J, Zheng C, Maguire JA, Hosmane NS (2004) Organometallics 23:3091

    Article  CAS  Google Scholar 

  21. Zhang S, Zhuang X, Zhang J, Chen W, Liu J (1999) J Organomet Chem 584:135

    Article  CAS  Google Scholar 

  22. Adamo C, Barone V (1999) J Chem Phys 110:6158

    Article  CAS  Google Scholar 

  23. Dolg M, Stoll H, Preuss H (1993) Theor Chim Acta 85:441

    Article  CAS  Google Scholar 

  24. Dolg M, Stoll H, Savin A, Preuss H (1989) Theor Chim Acta 75:173

    Article  CAS  Google Scholar 

  25. Ernzerhof M, Scuseria GE (1999) J Chem Phys 110:5029

    Article  CAS  Google Scholar 

  26. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297

    Article  CAS  Google Scholar 

  27. Riplinger C, Neese F (2013) J Chem Phys 138:034106

    Article  Google Scholar 

  28. Riplinger C, Sandhoefer B, Hansen A, Neese F (2013) J Chem Phys 139:134101

    Article  Google Scholar 

  29. Barisic D, Buschmann DA, Schneider D, Maichle-Mössmer C, Anwander R (2019) Chem Eur J 25:4821

    Article  CAS  Google Scholar 

  30. Fecker AC, Freytag M, Jones PG, Walter MD (2019) Dalton Trans 48:8297

    Article  CAS  Google Scholar 

  31. Raeder J, Reiners M, Baumgarten R, Münster K, Baabe D, Freytag M, Jones PG, Walter MD (2018) Dalton Trans 47:14468

    Article  CAS  Google Scholar 

  32. Barisic D, Lebon J, Maichle-Mössmer C, Anwander R (2019) Chem Commun 55:7089

    Article  CAS  Google Scholar 

  33. Barisic D, Schneider D, Maichle-Mössmer C, Anwander R (2018) Angew Chem Int Ed 58:1515

    Article  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam MJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision B.01. Gaussian, Inc., Wallingford

  35. Pritchard BP, Altarawy D, Didier B, Gibson TD, Windus TL (2019) J Chem Inf Model 59:4814

    Article  CAS  Google Scholar 

  36. Neese F (2012) WIREs Comput Mol Sci 2:73

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Laboratory of Computational Chemistry located at the Centro de Investigación en Materiales Avanzados, S. C., Unidad Monterrey (Advanced Materials Research Center S. C., Monterrey) for the computation time needed to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Sánchez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medina-Dzul, K., Molares-Meza, S., Garay-Tapia, A. et al. Influence of halogens on organometallic open pentadienyl lanthanum complexes XLa(C5H7)2 (X = H, F–I). Monatsh Chem 151, 1525–1531 (2020). https://doi.org/10.1007/s00706-020-02682-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02682-7

Keywords

Navigation