Skip to main content

Advertisement

Log in

First-principle study of the adsorption of volatile sulfur compounds on black phosphorene nanosheets doped with some transition metals

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Density functional theory was applied to study the adsorption of some volatile sulfur compounds (VSCs) such as hydrogen sulfide, methyl mercaptan, and ethyl mercaptan on the black phosphorene (BP) nanosheets doped with some transitional atoms (Sc, V, Co, and Ni) at B97D/6-31G(d) level of the theory. Results indicated that doping transition metals in BP nanosheet remarkably reduced the energy gap and enhanced electronic properties of the sheet for the gas detection. Adsorption energies of H2S, MeSH, and EtSH over M-doped BP sheets showed strong chemisorption in comparison of the pristine BP exhibiting weak interaction with the gases. Maximum value of the adsorption energy was found during the interaction with V-BP sheet for all gases. It was also found that adsorption energies increased with the size of the chain bonded with thiol (–SH) and the distance between the doped metal and S atom in the gas decreased with the atomic number of the metal.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tokura Y, Nakada G, Moriyama Y, Oaki Y, Imai H, Shiratori S (2017) Anal Chem 89:12123

    CAS  PubMed  Google Scholar 

  2. Rashidi A-M, Mirzaeian M, Khodabakhshi S (2015) Nat Gas Sci Eng 25:103

    CAS  Google Scholar 

  3. Ganji M-D, Sharifi N, Ardjmand M, Ahangari M-G (2012) Appl Surf Sci 261:697

    CAS  Google Scholar 

  4. Li Y, Wang L-J, Fan H-L, Shangguan J, Wang H, Mi J (2015) Energy Fuels 29:298

    CAS  Google Scholar 

  5. Bashkova S, Bagreev A, Bandosz T-J (2005) Catal Today 99:323

    CAS  Google Scholar 

  6. Golebiowska M, Roth M, Firlej L, Kuchta B, Wexler C (2012) Carbon 50:225

    CAS  Google Scholar 

  7. Weber G, Benoit F, Bellat J-P, Paulin C, Mougin P, Thomas M (2008) Micro Meso Mater 109:184

    CAS  Google Scholar 

  8. Xu M, Liang T, Shi M, Chen H (2013) Chem Rev 113:3766

    CAS  PubMed  Google Scholar 

  9. Wang J, Ma F, Sun M (2017) RSC Adv 7:16801

    CAS  Google Scholar 

  10. Kubesa O, Horackova V, Moravec Z, Farka Z, Skladal P (2017) Monatsh Chem 148:1937

    CAS  Google Scholar 

  11. Kou L, Ma Y, Smith S-C, Chen C (2015) J Phys Chem Lett 6:1509

    CAS  PubMed  Google Scholar 

  12. Kulish V-V, Malyi O-I, Persson C, Wu P (2015) Phys Chem Chem Phys 17:992

    CAS  PubMed  Google Scholar 

  13. Liu H, Neal A-T, Zhu Z, Luo Z, Xu X, Tomanek D, Ye P-D (2014) ACS Nano 8:4033

    CAS  PubMed  Google Scholar 

  14. Reich E-S (2014) Nature 506:7486

    Google Scholar 

  15. Zhang R, Li B, Yang J (2015) J Phys Chem C 119:2871

    CAS  Google Scholar 

  16. Lalitha M, Nataraj Y, Lakshmipathi S (2016) Appl Surf Sci 377:311

    CAS  Google Scholar 

  17. Kou L, Frauenheim T, Chen C (2014) J Phys Chem Lett 5:2675

    CAS  PubMed  Google Scholar 

  18. Guo S, Yuan L, Liu X, Zhou W, Song X, Zhang S (2017) Chem Phys Lett 686:83

    CAS  Google Scholar 

  19. Abbas A-N, Liu B, Chen L, Ma Y, Cong S, Aroonyadet N, Kopf M, Nilges T, Zhou C (2015) ACS Nano 9:5618

    CAS  PubMed  Google Scholar 

  20. Mahabal M-S, Deshpande M-D, Hussain T, Ahuja R (2016) J Phys Chem C 120:20428

    CAS  Google Scholar 

  21. Cai Y, Ke Q, Zhang G, Zhang Y-W (2015) J Phys Chem C 119:3102

    CAS  Google Scholar 

  22. Sibari A, Kerrami Z, Marjaoui A, Lakhal M, Benyoussef A, Benaissa M, Mounkachi O, Kara A (2016) IEEE 2016 international renewable and sustainable energy conference (IRSEC). https://doi.org/10.1109/IRSEC.2016.7983916

  23. Zhang H-P, Luo X-G, Lin X-Y, Lu X, Leng Y, Song H-T (2013) Appl Surf Sci 283:559

    CAS  Google Scholar 

  24. Suvansinpan N, Hussain F, Zhang G, Chiu C-H, Cai Y, Zhang Y-W (2016) Nanotechnology 27:065708

    PubMed  Google Scholar 

  25. Samadizadeh M, Peyghan A-A, Rastegar S-F (2015) Chin Chem Lett 26:1042

    CAS  Google Scholar 

  26. Zhang Y-H, Yue L-J, Gong F-L, Li F, Zhang H-L, Chen J-L (2017) Vacuum 141:109

    CAS  Google Scholar 

  27. Moghadaszadeh Z, Toosi M-R, Zardoost MR (2019) J Mol Model 25:138

    PubMed  Google Scholar 

  28. Arabieh M, Moghaddaszadeh Z, Toosi MR, Lagzian M (2019) Res Chem Intermed 45:5577

    CAS  Google Scholar 

  29. Arabieh M, Taghipourazar Y (2017) Appl Surf Sci 396:1411

    CAS  Google Scholar 

  30. Hu J, Zhao L, Du J, Jiang G (2020) Appl Surf Sci 504:144326

    CAS  Google Scholar 

  31. Gazzari S, Cortés-Arriagada D (2020) J Alloy Compd 831:154885

    CAS  Google Scholar 

  32. Gaganpreet (2020) Appl Surf Sci 507:144967

    CAS  Google Scholar 

  33. Zhang H-P, Du A, Shi Q-B, Zhou Y, Zhang Y, Tang Y (2018) J CO2 Util 24:463

    CAS  Google Scholar 

  34. Hashmi A, Hong J (2015) J Phys Chem C 119:9198

    CAS  Google Scholar 

  35. Tonigold KF, Grob A (2015) Surf Sci 640:18

    Google Scholar 

  36. Peng C, Zhong Y, Min F (2018) Appl Clay Sci 152:249

    CAS  Google Scholar 

  37. Zhang X, Dai Z, Chen Q, Tang J (2014) Phys Scr 89:065803

    Google Scholar 

  38. Zhang H-P, Luo X-G, Song H-T, Lin X-Y, Lu X, Tang Y (2014) Appl Surf Sci 317:511

    CAS  Google Scholar 

  39. Chen X, Shen B-X, Sun H, Zhan G-X (2017) Ind Eng Chem Res 56:10164

    CAS  Google Scholar 

  40. Heidari H, Afshari S, Habibi E (2015) RSC Adv 5:94201

    CAS  Google Scholar 

  41. Baei M-T, Kanani Y, Joveini Rezaei V, Soltani A (2014) Appl Surf Sci 295:18

    CAS  Google Scholar 

  42. Shahbazi Kootenaei A-H, Ansari G (2016) Phys Lett A 380:2664

    CAS  Google Scholar 

  43. Valaboju A, Gunturu K-C, Kotamarthi B, Joly D, Hissler M (2017) Comput Theor Chem 1113:61

    CAS  Google Scholar 

  44. De Souza L-A, Soeiro M-M, De Almeida W-B (2018) Int J Quantum Chem 118:e25773

    Google Scholar 

  45. Schmidt M-W, Baldridge K-K, Boatz J-A, Elbert S-T, Gordon M-S, Jensen J-H, Koseki S, Matsunaga N, Nguyen K-A, Su S, Windus T-L, Dupuis M, Montgomery J-A (1993) J Comput Chem 14:1347

    CAS  Google Scholar 

  46. O’Boyle N-M, Tenderholt A-L, Langner K-M (2008) J Comput Chem 29:839

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Toosi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4036 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghaddaszadeh, Z., Toosi, M.R., Zardoost, M.R. et al. First-principle study of the adsorption of volatile sulfur compounds on black phosphorene nanosheets doped with some transition metals. Monatsh Chem 151, 1501–1510 (2020). https://doi.org/10.1007/s00706-020-02676-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02676-5

Keywords

Navigation