Skip to main content
Log in

Tunable solid-state photochromism based on proton and anion-controlled structural transformation of pyridinium-based organic small molecules

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

An organic molecular system with proton and anion-tunable photochromism properties based on a pyridinium derivative was developed. Through controlling the pH value and anion nature of the self-assembled systems, the novel three compounds displayed different photochromism behaviors. This work reveals that the introduction of additional groups into the molecule increases the diversity of the property of such complexes.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Irie M (2000) Chem Rev 100:1685

    CAS  PubMed  Google Scholar 

  2. Yokoyama Y (2000) Chem Rev 100:1717

    CAS  PubMed  Google Scholar 

  3. Bouas-Laurent H, Castellan A, Desvergne JP, Lapouyade R (2000) Chem Soc Rev 29:43

    CAS  Google Scholar 

  4. Minkin VI (2004) Chem Rev 104:2751

    CAS  PubMed  Google Scholar 

  5. Kishimoto Y, Abe J (2009) J Am Chem Soc 131:4227

    CAS  PubMed  Google Scholar 

  6. Xia HY, Chen YK, Yang G, Zou G, Zhang QJ, Zhang DG, Ming H (2014) ACS Appl Mater Interfaces 17:15466

    Google Scholar 

  7. Lv B, Wu Z, Ji C, Yang W, Yan D, Yin M (2015) J Mater Chem C 3:8519

    CAS  Google Scholar 

  8. Paquette MM, Patrick BO, Frank NL (2011) J Am Chem Soc 133:10081

    CAS  PubMed  Google Scholar 

  9. Aurélie Perrier A, Maurel F, Perpète EA, Wathelet V, Jacquemin D (2009) J Phy Chem A 113:13004

    Google Scholar 

  10. Tagawa N, Masuhara A, Kasai H, Nakanishi H, Oikawa H (2010) Cryst Growth Des 10:2857

    CAS  Google Scholar 

  11. Buckup T, Sarter C, Volpp HR, Jäschke A, Motzkus M (2015) J Phys Chem Lett 6:4717

    CAS  PubMed  Google Scholar 

  12. Harada J, Taira M, Ogawa K (2007) Cryst Growth Des 17:2682

    Google Scholar 

  13. Yuan JY, Yuan YZ, Tian XH, Wang HS, Liu YD, Feng RS (2019) J Phys Chem C 123:29838

    CAS  Google Scholar 

  14. Hadjoudis E, Mavridis IM (2014) Chem Soc Rev 33:579

    Google Scholar 

  15. Robert F, Naik AD, Hidara F, Tinant B, Robiette R, Wouters J, Garcia Y (2010) Eur J Org Chem 2010:621

    Google Scholar 

  16. Haneda T, Kawano M, Kojima T, Fujita M (2007) Angew Chem Int Edn 46:6643

    CAS  Google Scholar 

  17. Liu L, Xie X, Jia D, Guo J, Xie X (2010) J Org Chem 75:4742

    CAS  PubMed  Google Scholar 

  18. Zhang GQ, Hsu CG, Lan CW, Gao R, Wen YZ, Zhou J (2019) ACS Appl Mater Interfaces 11:2254

    CAS  PubMed  Google Scholar 

  19. Wu Z, Ji CD, Zhao XJ, Han YL, Müllen K, Pan K, Yin MZ (2019) J Am Chem Soc 141:7385

    CAS  PubMed  Google Scholar 

  20. Lv XY, Wang MS, Yang C, Wang GE, Wang SH, Lin RG, Guo GC (2012) Inorg Chem 51:4015

    CAS  PubMed  Google Scholar 

  21. Yao QX, Ju ZF, Jin XH, Zhang J (2009) Inorg Chem 48:1266

    CAS  PubMed  Google Scholar 

  22. Sun JK, Wang P, Yao QX, Chen YJ, Li ZH, Zhang J (2012) J Mater Chem 22:12212

    CAS  Google Scholar 

  23. Chen C, Sun JK, Zhang YJ, Yang XD, Zhang J (2017) Angew Chem Int Edn 56:14458

    CAS  Google Scholar 

  24. Brivio F, Frost JM, Skelton JM, Jackson AJ, Weber OJ, Weller MT, Goñi AR, Leguy AMA, Barnes PRF, Walsh A (2015) Phys Rev B 92:144308

    Google Scholar 

  25. Wang MS, Yang C, Wang GE, Xu G, Lv XY, Xu ZN, Lin RG, Cai LZ, Guo GC (2012) Angew Chem Int Edn 51:3432

    CAS  Google Scholar 

  26. Klajn R (2014) Chem Soc Rev 43:148

    CAS  PubMed  Google Scholar 

  27. Pardo R, Zayat M, Levy D (2011) Chem Soc Rev 40:672

    CAS  PubMed  Google Scholar 

  28. Zhang J, Zou Q, Tian H (2013) Adv Mater 25:378

    CAS  PubMed  Google Scholar 

  29. Zhu MQ, Zhu L, Han JJ, Wu W, Hurst JK, Li ADQ (2006) J Am Chem Soc 128:4303

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu FY, Morokuma K (2013) J Am Chem Soc 135:10693

    CAS  PubMed  Google Scholar 

  31. Wang DR, Wang XG (2013) Prog Polym Sci 38:271

    CAS  Google Scholar 

  32. Yang XD, Sun L, Chen C, Zhang YJ, Zhang J (2017) Dalton Trans 46:4366

    CAS  PubMed  Google Scholar 

  33. Higuchi M, Tanaka D, Horike S, Sakamoto H, Takata M, Kitagawa S (2009) J Am Chem Soc 131:10336

    CAS  PubMed  Google Scholar 

  34. Monk PMS (1998) The viologens: physicochemical properties, synthesis and applications of the salts of 4,4′-Bipyridine. Wiley, New York

    Google Scholar 

  35. Li HY, Wei YL, Dong XD, Zang SQ, Mak TCW (2015) Chem Mater 27:1327

    CAS  Google Scholar 

  36. Toma O, Mercier N, Allain M, Kassiba AA, Bellat JP, Weber G, Bezverkhyy I (2015) Inorg Chem 54:8923

    CAS  PubMed  Google Scholar 

  37. Wang J, Li LS, Zhang XM (2016) ACS Appl Mater Interfaces 8:24862

    CAS  PubMed  Google Scholar 

  38. Yang WT, Tian HR, Li JP, Hui YF, He X, Li JY, Dang S, Xie ZG, Sun ZM (2016) Chem Eur J 22:15451

    CAS  PubMed  Google Scholar 

  39. Zhang YJ, Chen C, Tan B, Cai LX, Yang XD, Zhang J (2016) Chem Commun 52:2835

    CAS  Google Scholar 

  40. Stojakovic J, Whitis AM, MacGillivray LR (2013) Angew Chem Int Edn 52:12127

    CAS  Google Scholar 

  41. Singh AS, Sun SS (2013) Chem Commun 49:10070

    CAS  Google Scholar 

  42. Yoshikawa H, Nishikiori Si, Watanabe T, Ishida T, Watanabe G, Murakami M, Suwinska K, Luboradzki R, Lipkowski J (2002) J Chem Soc Dalton:1907

  43. Jin XH, Chen C, Ren CX, Cai LX, Zhang J (2014) Chem Commun 50:15878

    CAS  Google Scholar 

  44. Zou R, Zhang J, Hu SZ, Hu F, Zhang HY, Fu ZY (2017) Cryst Eng Commun 19:6259

    CAS  Google Scholar 

  45. Wang MS, Guo GC, Zou WQ, Zhou WW, Zhang ZJ, Xu G, Huang JS (2008) Angew Chem Int Edn 120:3621

    Google Scholar 

  46. Guo RY, Sun L, Pan XY, Yang XD, Ma S, Zhang J (2018) Chem Commun 54:12614

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from the National Natural Science Foundation of China (Grant No.21077002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Sheng Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3716 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HS., Guo, RY., Zhang, QM. et al. Tunable solid-state photochromism based on proton and anion-controlled structural transformation of pyridinium-based organic small molecules. Monatsh Chem 151, 757–763 (2020). https://doi.org/10.1007/s00706-020-02611-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02611-8

Keywords

Navigation