Skip to main content

Advertisement

Log in

Synthesis and biological evaluation of quinoline/cinnamic acid hybrids as amyloid-beta aggregation inhibitors

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The objective of the current study is to evaluate the potency of quinoline/cinnamic acid hybrids against amyloid-beta (Aβ) aggregation. In total, six new target quinoline/cinnamic acid hybrids were synthesized and screened for their in vitro anti-Aβ42 aggregation activity. Some hybrids, including (E)-N-(2-cinnamamidoethyl)-6,7-dimethoxyquinoline-2-carboxamide, (E)-6,7-dimethoxy-N-[2-[3-(4-methoxyphenyl)acrylamido]ethyl]quinoline-2-carboxamide, and (E)-6,7-dimethoxy-N-[2-[3-(2-methoxyphenyl)acrylamido]ethyl]quinoline-2-carboxamide, showed significant anti-Aβ42 aggregation activity. Molecular docking method was used to predict the binding modes of these compounds with Aβ42. In addition, their cytotoxicity towards neuroblastoma SH-SY5Y and human normal hepatocyte LO2 cells were tested. Neuroprotective evaluation demonstrated that these compounds could attenuate Aβ42-induced neurotoxicity towards SH-SY5Y cells in a dose-dependent manner. Overall, the present study provides quinoline/cinnamic acid hybrids as a new template for developing Aβ aggregation inhibitors against Alzheimer’s disease.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wiemann J, Loesche A, Csuk R (2017) Bioorg Chem 74:145

    CAS  PubMed  Google Scholar 

  2. Mattila J, Soininen H, Koikkalainen J, Rueckert D, Wolz R, Waldemar G, Lötjönen J (2012) J Alzheimer’s Dis 32:969

    CAS  Google Scholar 

  3. World Alzheimer Report 2018. https://www.alz.co.uk/research/world-report-2018. Accessed 27 Nov 2019

  4. Lorenzo A, Yuan M, Zhang Z, Paganetti PA, Sturchler-Pierrat C, Staufenbiel M, Mautino J, Vigo FS, Sommer B, Yankner BA (2000) Nat Neurosci 3:460

    CAS  PubMed  Google Scholar 

  5. Chen GF, Xu TH, Yan Y, Zhou YR, Jiang Y, Melcher K, Xu HE (2017) Acta Pharmacol Sin 38:1205

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Glabe C (2010) Biophys J 98:3a

    Google Scholar 

  7. Selkoe DJ (2001) Physiol Rev 81:741

    CAS  PubMed  Google Scholar 

  8. Thorsett ED, Latimer LH (2000) Curr Opin Chem Biol 4:377

    CAS  PubMed  Google Scholar 

  9. Ahmad A, Ali T, Park HY, Badshah H, Rehman SU, Kim MO (2017) Mol Neurobiol 54:2269

    CAS  PubMed  Google Scholar 

  10. Czaplinska B, Spaczynska E, Musiol R (2018) Med Chem 14:19

    CAS  PubMed  Google Scholar 

  11. Van Hau T, Ruankham W, Suwanjang W, Songtawee N, Wongchitrat P, Pingaew R, Prachayasittikul V, Prachayasittikul S, Phopin K (2019) Chem Res Toxicol 32:2182

    PubMed  Google Scholar 

  12. Bayat M, Safari F, Nasri S, Hosseini FS (2019) Monatsh Chem 150:703

    CAS  Google Scholar 

  13. Lien VT, Olberg DE, Hagelin G, Klaveness J (2019) Monatsh Chem 150:1947

    CAS  Google Scholar 

  14. Pinheiro LCS, Feitosa LM, Gandi MO, Silveira FF, Boechat N (2019) Molecules 24:E4095

    Google Scholar 

  15. Upadhyay KD, Dodia NM, Khunt RC, Chaniara RS, Shah AK (2019) Chem Biol Drug Des 94:1647

    CAS  PubMed  Google Scholar 

  16. Huang W, Liang M, Li Q, Zheng X, Zhang C, Wang Q, Tang L, Zhang Z, Wang B, Shen Z (2018) Eur J Med Chem 177:247

    Google Scholar 

  17. Mo J, Yang H, Chen T, Li Q, Lin H, Feng F, Liu W, Qu W, Guo Q, Chi H, Chen Y, Sun H (2019) Bioorg Chem 93:103310

    PubMed  Google Scholar 

  18. Faux NG, Ritchie CW, Gunn A, Rembach A, Tsatsanis A, Bedo J, Harrison J, Lannfelt L, Blennow K, Zetterberg H, Ingelsson M, Masters CL, Tanzi RE, Cummings JL, Herd CM, Bush AI (2010) J Alzheimers Dis 20:509

    CAS  PubMed  Google Scholar 

  19. Lannfelt L, Blennow K, Zetterberg H, Batsman S, Ames D, Harrison J, Masters CL, Targum S, Bush AI, Murdoch R, Wilson J, Ritchie CW (2008) Lancet Neurol 7:79779

    Google Scholar 

  20. Umar T, Shalini S, Raza MK, Gusain S, Kumar J, Ahmed W, Tiwari M, Hoda N (2018) MedChemComm 9:1891

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sova M (2012) Mini Rev Med Chem 12:749

    CAS  PubMed  Google Scholar 

  22. Takeda Y, Tanigawa N, Sunghwa F, Ninomiya M, Hagiwara M, Matsushita K, Koketsu M (2010) Bioorg Med Chem Lett 20:4855

    CAS  PubMed  Google Scholar 

  23. Chandra S, Roy A, Jana M, Pahan K (2019) Neurobiol Dis 124:379

    CAS  PubMed  Google Scholar 

  24. Chen Y, Zhu J, Mo J, Yang H, Jiang X, Lin H, Gu K, Pei Y, Wu L, Tan R, Hou J, Chen J, Lv Y, Bian Y, Sun H (2018) J Enzyme Inhib Med Chem 3:290

    Google Scholar 

  25. Takao K, Toda K, Saito T, Sugita Y (2017) Chem Pharm Bull (Tokyo) 65:1020

    CAS  Google Scholar 

  26. Lan JS, Hou JW, Liu Y, Ding Y, Zhang Y, Li L, Zhang T (2017) J Enzyme Inhib Med Chem 32:776

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ivasiv V, Albertini C, Gonçalves AE, Rossi M, Bolognesi ML (2019) Curr Top Med Chem 19:1694

    CAS  PubMed  Google Scholar 

  28. Pérez B, Teixeira C, Gut J, Rosenthal PJ, Gomes JR, Gomes P (2012) ChemMedChem 7:1537

    PubMed  Google Scholar 

  29. Mabeta P, Pavić K, Zorc B (2018) Acta Pharm 68:337

    CAS  PubMed  Google Scholar 

  30. Pérez BC, Teixeira C, Figueiras M, Gut J, Rosenthal PJ, Gomes JR, Gomes P (2012) Eur J Med Chem 54:887

    PubMed  Google Scholar 

  31. Jiang CS, Ge YX, Cheng ZQ, Wang YY, Tao HR, Zhu K, Zhang H (2019) Molecules 24:E2568

    PubMed  Google Scholar 

  32. Jiang CS, Ru T, Yao LG, Miao ZH, Guo YW (2019) Fitoterapia 136:104176

    CAS  PubMed  Google Scholar 

  33. Cheng ZQ, Song JL, Zhu K, Zhang J, Jiang CS, Zhang H (2018) Mar Drugs 16:E293

    PubMed  Google Scholar 

  34. Jiang CS, Ge YX, Cheng ZQ, Song JL, Wang YY, Zhu K, Zhang H (2019) J Comput Aided Mol Des 33:521

    CAS  PubMed  Google Scholar 

  35. Fang L, Fang X, Gou S, Lupp A, Lenhardt I, Sun Y, Huang Z, Chen Y, Zhang Y, Fleck C (2014) Eur J Med Chem 76:376

    CAS  PubMed  Google Scholar 

  36. Meena P, Manral A, Nemaysh V, Saini V, Siraj F, Luthra PM, Tiwari M (2016) RSC Adv 6:104847

    CAS  Google Scholar 

  37. Rodriguez MH, Morales LGF, Basurto JC, Hernandez MCR (2018) Molecular docking and molecular dynamics simulation to evaluate compounds that avoid the amyloid beta 1–42 aggregation. In: Roy K (ed) Computational modeling of drugs against Alzheimer’s disease. Neuromethods, vol 132. Humana Press, New York, p 229

    Google Scholar 

  38. Mei WW, Ji SS, Xiao W, Wang XD, Jiang CS, Ma WQ, Zhang HY, Gong JX, Guo YW (2017) Monatsh Chem 148:1807

    CAS  Google Scholar 

  39. Kopchuk DS, Nikonov IL, Khasanov AF, Giri K, Santra S, Kovalev IS, Nosova EV, Gundala S, Venkatapuram P, Zyryanov GV, Majee A, Chupakhin ON (2018) Org Biomol Chem 16:5119

    CAS  PubMed  Google Scholar 

  40. Ge YH, Wu YM, Xuw ZJ (2005) Huaxue Shiji 27:415

    Google Scholar 

  41. Walther B, Walter R (1943) Justus Liebigs Ann Chem 554:269

    Google Scholar 

  42. Li L, Li Z, Liu M, Shen W, Wang B, Guo H, Lu Y (2015) Molecules 21:E49

    PubMed  Google Scholar 

  43. Li H, Li M, Xu R, Wang S, Zhang Y, Zhang L, Zhou D, Xiao S (2019) Eur J Med Chem 163:560

    CAS  PubMed  Google Scholar 

  44. Crescenzi O, Tomaselli S, Guerrini R, Salvadori S, D’Ursi AM, Temussi PA, Picone D (2002) Eur J Biochem 269:5642

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research work was financially supported by the Natural Science Foundation of China [no. 21672082], Natural Science Foundation of Shandong Province [nos. ZR2019YQ31, ZR2017BC101], and Shandong Talents Team Cultivation Plan of University Preponderant Discipline [no. 10027].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangpu Liu or Cheng-Shi Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 925 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, YX., Cheng, ZQ., Zhou, L. et al. Synthesis and biological evaluation of quinoline/cinnamic acid hybrids as amyloid-beta aggregation inhibitors. Monatsh Chem 151, 845–852 (2020). https://doi.org/10.1007/s00706-020-02609-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02609-2

Keywords

Navigation