Skip to main content

Adsorption behavior of metformin drug on the C60 and C48 nanoclusters: a comparative DFT study

Abstract

Interaction of metformin (MF) drug with C60, C48, SiC59, SiC47, GeC59, and GeC47 nanoclusters was investigated using density functional theory to explore a new drug delivery system. All calculations were investigated at the B3PW91 method and 6-311G(d, p) standard basis set in gas and solvent phases. The calculated adsorption energies are about 0.43 and − 2.10 kJ mol−1 for C60 and C48 nanoclusters, respectively. Our results indicated weak adsorption and sensitivity in MF/C60 and MF/C48. To make the cluster more appropriate for drug delivery, MF was adsorbed on the SiC59, SiC47, GeC59, and GeC47. Thermodynamic analyses were demonstrated interaction between MF and SiC59, SiC47, GeC59, and GeC47 are exothermic and spontaneous. Although, adsorption energy in SiC59, SiC47, GeC59 and GeC47 indicated strong adsorption, but sensitivity increased only in SiC59 (reduced from 2.17 eV in pure SiC59 to 1.75 eV in MF/SiC59). Furthermore, we predicted a short recovery time for SiC59 nanocluster. It is predicted that MF drug incorporating SiC59 can be extended as a drug delivery system.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Lalau JD, Race JM (1999) Drugs 58:55

    CAS  PubMed  Google Scholar 

  2. Wright JL, Stanford JL (2009) Cancer Causes Control 20:1617

    PubMed  PubMed Central  Google Scholar 

  3. Mahmood K, Naeem M, Rahimnajjad NA (2013) Eur J Intern Med 24:20

    CAS  PubMed  Google Scholar 

  4. Rizos CV, Elisaf MS (2013) Eur J Pharmacol 705:96

    CAS  PubMed  Google Scholar 

  5. Johnson JA, Majumdar SR, Simpson SH, Toth EL (2002) Diabetes Care 25:2244

    CAS  PubMed  Google Scholar 

  6. Hoseininezhad-Namin MS, Pargolghasemi P, Alimohammadi S, Rad AS, Taqavi L (2017) Phys E 90:204

    CAS  Google Scholar 

  7. Ciofani G, Raffa V, Menciassi A, Cuschieri A (2008) Biotechnol Bioeng 101:850

    CAS  PubMed  Google Scholar 

  8. Ghasemi AS, Taghartapeh MR, Soltani A, Mahon PJ (2019) J Mol Liq 275:955

    CAS  Google Scholar 

  9. Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE (1985) Nature 318:162

    CAS  Google Scholar 

  10. De Jong WH, Borm PJA (2008) Int J Nanomed 3:133

    Google Scholar 

  11. Conti M, Tazzari V, Baccini C, Pertici G, Serino LP, De Giorgi U (2006) Vivo 20:697

    CAS  Google Scholar 

  12. Singh R, Lillard JW Jr (2009) Exp Mol Pathol 86:215

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bakry R, Vallant RM, Najam-ul-Haq M, Rainer M, Szabo Z, Huck CW, Bonn GK (2007) Int J Nanomed 2:639

    CAS  Google Scholar 

  14. Shi J, Zhang H, Wang L, Li L, Wang H, Wang Z, Li Z, Chen C, Hou L, Zhang C, Zhang Z (2013) Biomaterials 34:251

    CAS  PubMed  Google Scholar 

  15. Fan J, Fang G, Zeng F, Wang X, Wu S (2013) Small 9:613

    CAS  PubMed  Google Scholar 

  16. Smalley RE (1992) Acc Chem Res 25:98

    CAS  Google Scholar 

  17. Chen Z, Jiao H, Bühl M, Hirsch A, Thiel W (2001) Theor Chem Acc 106:352

    CAS  Google Scholar 

  18. Zhang C, Xu X, Wu H, Zhang Q (2002) Chem Phys Lett 364:213

    CAS  Google Scholar 

  19. Piskoti C, Yarger J, Zettl A (1998) Nature 393:771

    CAS  Google Scholar 

  20. Prinzbach H, Weller A, Landenberger P, Wahl F, Wörth J, Scott LT, Gelmont M, Olevano D, Issendorff BV (2000) Nature 407:60

    CAS  PubMed  Google Scholar 

  21. Rad AS, Aghaei SM, Aali E, Peyravi M (2017) Diam Relat Mater 77:116

    CAS  Google Scholar 

  22. Rad AS, Aghaei SM, Aali E, Peyravi M, Jahanshahi M (2018) Appl Organomet Chem 32:1

    Google Scholar 

  23. Rad AS, Ayub K (2018) Mater Res Bull 97:399

    CAS  Google Scholar 

  24. Rad AS, Ayub K (2017) Comput Theor Chem 1121:68

    Google Scholar 

  25. Zhang BL, Wang CZ, Ho KM, Xu CH, Chan CT (1992) J Chem Phys 97:5007

    CAS  Google Scholar 

  26. Wu HS, Xu XH, Jiao H (2004) J Phys Chem A 108:3813

    CAS  Google Scholar 

  27. Youle RJ, Karbowski M (2005) Nat Rev Mol Cell Biol 6:657

    CAS  PubMed  Google Scholar 

  28. Hirsch A, Lamparth I, Grösser T, Karfunkel HR (1994) J Am Chem Soc 116:9385

    CAS  Google Scholar 

  29. Hazrati MK, Hadipour NL (2016) Phys Lett Sect A Gen At Solid State Phys 380:937

    CAS  Google Scholar 

  30. Friedman SH, DeCamp DL, Kenyon GL, Sijbesma RP, Srdanov G, Wudl F (1993) J Am Chem Soc 115:6506

    CAS  Google Scholar 

  31. Guldi DM, Prato M (2000) Acc Chem Res 33:695

    CAS  PubMed  Google Scholar 

  32. DeRosa MC, Crutchley RJ (2002) Coord Chem Rev 233:351

    Google Scholar 

  33. Chigo-Anota E, Escobedo-Morales A, Hernández-Cocoletzi H, López Y, López JG (2015) Phys E 74:538

    CAS  Google Scholar 

  34. Shariatinia Z, Shahidi S (2014) J Mol Graph Modell 52:71

    CAS  Google Scholar 

  35. Billas IML, Tast F, Branz W, Malinowski N, Heinebrodt M, Martin TP, Boero M, Massobrio C, Parrinello M (1999) Eur Phys J D 9:337

    CAS  Google Scholar 

  36. Parlak C, Alver Ö (2017) Chem Phys Lett 678:85

    CAS  Google Scholar 

  37. Pargolghasemi P, Hoseininezhad-Namin MS, Parchehbaf Jadid A (2017) Curr Comput Aided Drug Des 13:249

    CAS  PubMed  Google Scholar 

  38. Chen H, Wang B, Gao D, Guan M, Zheng L, Ouyang H, Chai Z, Zhao Y, Feng W (2013) Small 9:2735

    CAS  PubMed  Google Scholar 

  39. Ciofani G, Raffa V, Yu J, Chen Y, Obata Y, Takeoka S, Menciassi A, Cuschieri A (2009) Curr Nanosci 5:33

    CAS  Google Scholar 

  40. Ciofani G (2010) Expert Opin Drug Deliv 7:889

    CAS  PubMed  Google Scholar 

  41. Attia AK, Abo-Talib NF, Tammam MH (2017) Adv Pharm Bull 7:151

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ghasemi AS, Mashhadban F, Ravari F (2018) Adsorption 24:471

    CAS  Google Scholar 

  43. Nurani M, Akbari V, Taheri A (2017) Carbohydr Polym 165:322

    CAS  PubMed  Google Scholar 

  44. Kia M, Golzar M, Mahjoub K, Soltani A (2013) Superlattices Microstruct 62:251

    CAS  Google Scholar 

  45. Khodam-Hazrati M, Hadipour NL (2016) Comput Theor Chem 1098:63

  46. Hedberg K, Hedberg L, Bethune DS, Brown CA, Dorn HC, Johnson RD, De Vries M (1991) Science 254:410

    CAS  PubMed  Google Scholar 

  47. Chigo Anota E, Cocoletzi GH (2014) Phys E 56:134

    CAS  Google Scholar 

  48. Hazrati MK, Javanshir Z, Bagheri Z (2017) J Mol Graphics Modell 77:17

    CAS  Google Scholar 

  49. Aihara JI (1999) J Phys Chem A 103:7487

    CAS  Google Scholar 

  50. Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M (2003) Nano Lett 3:929

    CAS  Google Scholar 

  51. Soltani A, Sousaraei A, Bezi Javan M, Eskandari M, Balakheyli H (2016) New J Chem 40:7018

    CAS  Google Scholar 

  52. Singla P, Riyaz M, Singhal S, Goel N (2016) Phys Chem Chem Phys 18:5597

    CAS  PubMed  Google Scholar 

  53. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 09, Rev. D.01. Gaussian Inc., Wallingford

  54. Perdew JP, Wang Y (1992) Phys Rev B 45:13244

    CAS  Google Scholar 

  55. Becke AD (1993) J Chem Phys 98:5648

    CAS  Google Scholar 

  56. Su K, Wei J, Hu X, Yue H, Lü L, Wang Y, Wen Z (2000) Acta Phys Chim Sin 16:650

    Google Scholar 

  57. Su K, Wei J, Hu X, Yue H, Lü L, Wang Y, Wen Z (2000) Acta Phys Chim Sin 16:722

    Google Scholar 

  58. Kazemi M, Rad AS (2017) Superlattices Microstruct 106:122

    CAS  Google Scholar 

  59. Deng WQ, Xu X, Goddard WA (2004) Phys Rev Lett 92:166103

    PubMed  Google Scholar 

  60. Karelson M, Tamin T, Zerner MC (1993) J Phys Chem 97:11901

    CAS  Google Scholar 

  61. Cammi R, Mennucci B, Tomasi J (1998) J Am Chem Soc 120:8834

    CAS  Google Scholar 

  62. Cammi R, Mennucci B, Tomasi J (1998) J Phys Chem A 102:870

    CAS  Google Scholar 

  63. Mennucci B, Martínez JM, Tomasi J (2001) J Phys Chem A 105:7287

    CAS  Google Scholar 

  64. Cammi R, Mennucci B, Tomasi J (2000) J Phys Chem A 104:4690

    CAS  Google Scholar 

  65. Mennucci B, Tomasi J, Cammi R, Cheeseman JR, Frisch MJ, Devlin FJ, Gabriel S, Stephens PJ (2002) J Phys Chem A 106:6102

    CAS  Google Scholar 

  66. Amovilli C, Barone V, Cammi R, Cancès E, Cossi M, Mennucci B, Pomelli CS, Tomasi J (1998) Adv Quant Chem 32:227

    Google Scholar 

Download references

Acknowledgements

The authors thank the Islamic Azad University, Ardabil Branch for technical supports during this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Ebrahimzadeh Rajaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kamali, F., Ebrahimzadeh Rajaei, G., Mohajeri, S. et al. Adsorption behavior of metformin drug on the C60 and C48 nanoclusters: a comparative DFT study. Monatsh Chem 151, 711–720 (2020). https://doi.org/10.1007/s00706-020-02597-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02597-3

Keywords

  • Metformin
  • Nanoclusters
  • Density functional theory
  • Adsorption