Skip to main content
Log in

Structure, stability, MEP, NICS, reactivity, and NBO of Si–Ge nanocages evolved from C20 fullerene at DFT

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

We have performed systematic theoretical studies of C20 and its SinGenC20-2n heterofullerenic derivatives with n = 1–10, at the density functional theory. Vibrational frequency analysis confirms that except for Si5Ge5C10, Si8Ge8C4, and Si10Ge10, other systems are true minima and none of the 12 computed heterofullerenes collapses to open deformed as segregated nanocage. Isolating the Si–Ge hetero bonds through C=C double bond and/or one carbon atom is an appropriate approach for reaching highly substituted stable heterofullerenes, since it prevents weak Si–Si and Ge–Ge homo bonds. The calculated band gap, ionization potential, and atomization energy of Si1Ge1C18 shows it as the best insulated heterofullerene. Binding energy, and absolute values of heat of atomization of computed heterofullerene decrease as number of substituting Si–Ge unit increases. Henceforth, in contrast to the common belief that thermodynamically stable species are not always kinetically stable, here isolable or extractable Si1Ge1C18 heterofullerene is stable from both viewpoints. Contrary, Si10Ge10 that unfortunately suffers from lack of carbon participation, is revealed as the most chemically reactive heterofullerene and the best optically active via increasing its hyperpolarizability. Exclusive of Si10Ge10, substitutional doping of other heterofullerenes leads to a high NBO charge distribution upon their surfaces. We are very pleased to state that isolating the Si–Ge single bonds by intermediation of only one carbon atom is an applicable strategy for obtaining the highest atomic charge distributions on C, Si, and Ge atoms of Si6Ge6C8 as suitable hydrogen storage. Evaluating nucleus independent chemical shift (NICS) values at the cage centers clearly show the highest aromatic character of Si1Ge1C18 species followed by Si2Ge2C16 (− 48.76 and − 35.42 ppm compared to − 19.61 for the pure carbon cage, C20).

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Simeon TM, Yanov I, Leszczynski J (2005) Int J Quantum Chem 105:429

    CAS  Google Scholar 

  2. Massobrio C, Djimbi DM, Matsubara M, Scipioni R, Boero M (2013) Chem Phys Lett 556:163

    CAS  Google Scholar 

  3. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    CAS  PubMed  Google Scholar 

  4. Schwerdtfeger P, Wirz LN, Avery J (2015) WIREs Comput Mol Sci 5:96

    CAS  Google Scholar 

  5. Akasaka T, Wudl F, Nagase S (2011) Angew Chem Int Ed 50:4048

    Google Scholar 

  6. Lou N, Li Y, Cui C, Liu Y, Gan L (2016) Org Lett 18:2236

    CAS  PubMed  Google Scholar 

  7. Hashikawa Y, Murata M, Wakamiya A, Murata Y (2016) J Am Chem Soc 138:4096

    CAS  PubMed  Google Scholar 

  8. Martín-Gomis L, Rotas G, Ohkubo K, Fernández-Lázaro F, Fukuzumi S, Tagmatarchis N, Sastre-Santos Á (2015) Nanoscale 7:7437

    PubMed  Google Scholar 

  9. Cambarau W, Fritze UF, Viterisi A, Palomares E, von Delius M (2015) Chem Commun 51:1128

    CAS  Google Scholar 

  10. Wessendorf CD, Eigler R, Eigler S, Hanisch J, Hirsch A, Ahlswede E (2015) Sol Energy Mater Sol Cells 132:450

    CAS  Google Scholar 

  11. Wang D, Wang X, Gao X, Hou D (2012) Comput Theor Chem 989:33

    CAS  Google Scholar 

  12. Huang S, Zhang G, Knutson NS, Fontana MT, Huber RC, Ferreira AS, Tolbert SH, Schwartz BJ, Rubin Y (2016) J Mater Chem A 4:416

    CAS  Google Scholar 

  13. Manaa MR, Xie RH, Smith VH Jr (2004) Chem Phys Lett 387:101

    Google Scholar 

  14. Scipioni R, Matsubara M, Ruiz E, Massobrio C, Boero M (2011) Chem Phys Lett 510:14

    CAS  Google Scholar 

  15. Pochet P, Genovese L, Caliste D, Rousseau I, Goedecker S, Deutsch T (2010) Phys Rev B 82:035431

    Google Scholar 

  16. Marcos PA, Alonso JA, Lόpez MJ (2007) J Chem Phys 126:044705

    PubMed  Google Scholar 

  17. Pellarin M, Ray C, Lermé J, Vialle JL, Broyer M (1999) J Chem Phys 110:6927

    CAS  Google Scholar 

  18. Marcos PA, Alonso JA, Molina LM, Rubio A, Lόpez MJ (2003) J Chem Phys 119:1127

    CAS  Google Scholar 

  19. Matsubara M, Massobrio C (2007) Appl Phys A 86:289

    CAS  Google Scholar 

  20. Matsubara M, Massobrio C (2007) Solid State Phenom 129:95

    CAS  Google Scholar 

  21. Gimarc BM (1983) J Am Chem Soc 105:1979

    CAS  Google Scholar 

  22. Longuet-Higgins HC, Rector CW, Platt JR (1950) J Chem Phys 18:1174

    CAS  Google Scholar 

  23. Koohi M, Soleimani AS, Shariati M (2018) Struct Chem 29:909

    CAS  Google Scholar 

  24. Baei MT, Koohi M, Shariati M (2018) Heteroat Chem 29:e21410

    Google Scholar 

  25. Baei MT, Koohi M, Shariati M (2018) J Mol Struct 1159:118

    CAS  Google Scholar 

  26. Soleimani AS, Koohi M, Mirza B (2016) J Phys Org Chem 29:514

    Google Scholar 

  27. Koohi M, Soleimani AS, Haerizade BN (2017) J Phys Org Chem 30:e3682

    Google Scholar 

  28. Koohi M, Kassaee MZ, Ghavami M, Haerizade BN, Ahmadi AA (2015) Monatsh Chem 146:1409

    CAS  Google Scholar 

  29. Koohi M, Soleimani AS, Shariati M (2017) J Mol Struct 1127:522

    CAS  Google Scholar 

  30. Koohi M, Shariati M, Soleimani AS (2017) J Phys Org Chem 30:e3678

    Google Scholar 

  31. Koohi M, Ghavami M, Haerizade BN, Zandi H, Kassaee MZ (2014) J Phys Org Chem 27:735

    CAS  Google Scholar 

  32. Momeni MR, Shakib FA (2010) Chem Phys Lett 492:137

    CAS  Google Scholar 

  33. Shakib FA, Momeni MR (2011) Chem Phys Lett 514:321

    CAS  Google Scholar 

  34. Haddon RC, Scott LT (1986) Pure Appl Chem 58:137

    CAS  Google Scholar 

  35. Haddon RC (1993) Science 261:1545

    CAS  PubMed  Google Scholar 

  36. Lin T, Zhang W-D, Huang J, He C (2005) J Phys Chem B 109:13755

    CAS  PubMed  Google Scholar 

  37. Prinzbach H, Weller A, Landenberger P, Wahl F, Worth J, Scott LT, Gelmont M, Olevano D, Issendorff B (2000) Nature 407:60

    CAS  PubMed  Google Scholar 

  38. Buhl M, Hirsch A (2006) Chem Rev 106:5191

    Google Scholar 

  39. Huda MN, Ray AK (2008) Chem Phys Lett 457:124

    CAS  Google Scholar 

  40. Alder RW, Blake ME, Oliva JM (1999) J Phys Chem A 103:11200

    CAS  Google Scholar 

  41. Devos A, Lannoo M (1998) Phys Rev B 58:8236

    CAS  Google Scholar 

  42. Raghavachari K, Strout DL, Odom GK, Scuseria GE, Pople JA, Johnson BG, Gill PMW (1993) Chem Phys Lett 214:357

    CAS  Google Scholar 

  43. Wang Z, Day P, Pachter R (1996) Chem Phys Lett 248:121

    CAS  Google Scholar 

  44. Saito M, Miyamoto Y (2002) Phys Rev B 65:165434

    Google Scholar 

  45. Parasuk V, Almlöf J (1991) Chem Phys Lett 184:187

    CAS  Google Scholar 

  46. Feyereisen M, Gutowski M, Simons J, Almlöf J (1992) J Chem Phys 96:2926

    CAS  Google Scholar 

  47. Hoffmann R, von Schleyer PR, Schaefer HF (2008) Angew Chem Int Ed 47:7164

    Google Scholar 

  48. Garcia-Borràs M, Luis JM, Solà M, Osuna S (2017) Inorg Chim Acta 468:38

    Google Scholar 

  49. Froudakis GE (2001) Nano Lett 1:531

    CAS  Google Scholar 

  50. Dheivamalar S, Sugi L, Ambigai K (2016) Comput Chem 4:17

    CAS  Google Scholar 

  51. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    CAS  Google Scholar 

  52. Chocholousova J, Vladimir Spirko V, Hobza P (2004) Chem Phys Soc 6:37

    CAS  Google Scholar 

  53. Govindarajan M, Karabacak M, Suvitha A, Periandy S (2012) Spectrochim Acta A Mol Biomol Spectrosc 89:137

    CAS  PubMed  Google Scholar 

  54. Ruiz-Espinoza A, Ramos E, Salcedo R (2013) Comput Theor Chem 1016:36

    CAS  Google Scholar 

  55. Bai H, Ai Y, Huang Y (2011) Phys Status Solidi B 248:969

    CAS  Google Scholar 

  56. Becke AD (1996) J Chem Phys 104:1040

    CAS  Google Scholar 

  57. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    CAS  Google Scholar 

  58. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    CAS  Google Scholar 

  59. Sobolewski AL, Domcke W (2002) J Phys Chem A 106:4158

    CAS  Google Scholar 

  60. Hariharan PC, Pople JA (1974) Mol Phys 27:209

    CAS  Google Scholar 

  61. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77:3654

    CAS  Google Scholar 

  62. Clark T, Chandrasekhar J, Spitznagel GW, von Schleyer PR (1983) J Comput Chem 4:294

    CAS  Google Scholar 

  63. Krishna R, Frisch MJ, Pople JA (1980) J Chem Phys 72:4244

    Google Scholar 

  64. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796

    CAS  Google Scholar 

  65. Predew JP, Wang Y (1992) Phys Rev B 45:13244

    Google Scholar 

  66. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    CAS  Google Scholar 

  67. Hehre WJ, Radom L, von Schleyer PR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  68. Foresman JB, Frisch A (1996) Exploring chemistry with electronic structure methods. Gaussian Inc, Pittsburgh

    Google Scholar 

  69. Glendening ED, Reed AE, Carpenter JE, Weinhold F NBO Version 3.1

  70. von Schleyer PR, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJ (1996) J Am Chem Soc 118:6317

    CAS  PubMed  Google Scholar 

  71. von Schleyer PR, Manoharan M, Wang Z, Kiran B, Jiao H, Puchta R, van Eikema Hommes NJ (2001) Org Lett 3:2465

    CAS  PubMed  Google Scholar 

  72. Ibrahim MR, von Schleyer PR (1985) J Comput Chem 6:157

    CAS  Google Scholar 

  73. Mizorogi N, Aihara J-I (2003) Phys Chem Chem Phys 5:3368

    CAS  Google Scholar 

  74. Watanabe M, Ishimaru D, Mizorogi N, Kiuchi M, Aihara J-I (2005) J Mol Struct (THEOCHEM) 726:11

    CAS  Google Scholar 

  75. Yang Z, Xu X, Wang G, Shang Z, Cai Z, Pan Y, Zhao X (2002) J Mol Struct (THEOCHEM) 618:191

    CAS  Google Scholar 

  76. Domingo LR, Chamorro E, Pérez P (2008) J Org Chem 73:4615

    CAS  PubMed  Google Scholar 

  77. Parr RG, Szentpaly L, Liu S (1999) J Am Chem Soc 121:1922

    CAS  Google Scholar 

  78. Pearson RG (1989) J Org Chem 54:1423

    CAS  Google Scholar 

  79. Chattaraj PK, Giri S (2007) J Phys Chem A 111:11116

    CAS  PubMed  Google Scholar 

  80. Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj PK (2007) J Phys Chem A 111:1358

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is financially supported by North Tehran Branch, Islamic Azad University, Tehran, Iran, and Technical and Vocational University of Tehran, Dr. Shariaty College, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Koohi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 16036 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koohi, M., Bastami, H. Structure, stability, MEP, NICS, reactivity, and NBO of Si–Ge nanocages evolved from C20 fullerene at DFT. Monatsh Chem 151, 693–710 (2020). https://doi.org/10.1007/s00706-020-02596-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02596-4

Keywords

Navigation