Skip to main content

Advertisement

Log in

Spectroscopic analysis of the interaction between Co3O4 nanoparticles and acid phosphatase

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In this study, the structure and stability of acid phosphatase in its interaction with Co3O4 nanoparticles are evaluated through absorbance, enzyme activity assay, fluorescence, thermal stability, and circular dichroism spectroscopy. It had been found that with the enhancement of Co3O4 nanoparticle concentration, the intensity of the enzyme’s ultraviolet spectrum was increasing. In fact, under these conditions (pH 4.8, T = 310 K), the activity of acid phosphatase was raised too. Also, it was revealed that by enhancing the concentration of the nanoparticles, the enzyme thermal stability increased from 342.0 to 346.0 K. Also, far-UV CD investigations illustrated that the Co3O4 nanoparticles could alter the secondary structure of acid phosphatase through an increase in the value of the α-helix structure (from 10.8 to 13.9%) and a decrease in the β-sheet (from 30.2 to 28.0%). By raising the temperature from 298 to 308 K, the Stern–Volmer constant decreased from 5.72 × 104 to 4.39 × 104 M−1. Also, it was found which Co3O4 nanoparticles quenched the intrinsic fluorescence of acid phosphatase by the static quenching mechanism. Therefore, the thermodynamic parameters showed that the binding process was spontaneous because the value of ∆G was negative. Also, van der Waals forces and hydrogen bonding interactions had the main effects on the interaction of Co3O4 nanoparticles with acid phosphatase because the values of ∆H and ∆H were negative. So, Co3O4 nanoparticles increased the stability and activity of acid phosphatase.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Simonet BM, Valcárcel M (2009) Anal Bioanal Chem 393:17

    CAS  PubMed  Google Scholar 

  2. Raghupathi KR, Koodali RT, Manna AC (2011) Langmuir 27:4020

    CAS  PubMed  Google Scholar 

  3. Farhadi S, Sepahdar A, Jahanara K (2013) J Nanostruct 3:199

    Google Scholar 

  4. Hu CC, Chang KH, Lin MC, Wu YT (2006) Nano Lett 6:2690

    CAS  PubMed  Google Scholar 

  5. Hu CC, Chen WC, Chang KH (2004) J Electrochem Soc 151:A281

    CAS  Google Scholar 

  6. Li C, Zhang HP, Fu LJ, Liu H, Wu YP, Rahm E, Holze R, Wu HQ (2006) Electrochim Acta 51:3872

    CAS  Google Scholar 

  7. Aillon KL, Xie Y, EI-Gendy N, Berkland CJ, Forrest ML (2009) Adv Drug Deliv Rev 61:457

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Jahnen-Dechent W (2009) Small 5:2067

    CAS  PubMed  Google Scholar 

  9. Schenk G, Ge Y, Carrington LE, Wynne CJ, Searle IR, Carroll BJ, Hamilton S, Jersey JD (1999) Arch Biochem Biophys 370:183

    CAS  PubMed  Google Scholar 

  10. Schenk G, Boutchard CL, Carrington LE, Noble CJ, Moubaraki B, Murray KS, Jersey JD, Hanson GR, Hamilton S (2001) J Biol Chem 276:19084

    CAS  PubMed  Google Scholar 

  11. Kruzel M, Morawiecka B (1982) Acta Biochim Pol 29:321

    CAS  PubMed  Google Scholar 

  12. Riederer MA, Hinnen A (1991) J Bacteriol 173:3539

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Martin M, Salazar P, Villalonga R, Campuzano S, Pingarron JM, Gonzalez-Mora JL (2014) J Mater Chem B 56:604

    Google Scholar 

  14. Wu Z-S, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng H-M (2010) ACS Nano 4:3187

    CAS  PubMed  Google Scholar 

  15. Dong J, Song L, Yin J-J, He W, Wu Y, Gu N, Zhang Y (2014) ACS Appl Mater Interfaces 6:1959

    CAS  PubMed  Google Scholar 

  16. Cho W-S, Duffin R, Badley M, Megson I-L, MacNee W, Howie S-E-M, Donaldson K (2012) Eur Respir J 39:546

    CAS  PubMed  Google Scholar 

  17. Shareghi B, Farhadian S, Zamani N, Salavati-Niasari M, Gholamrezaei S (2016) Monatsh Chem 147:465

    CAS  Google Scholar 

  18. Huang Q, Shindo H (2000) Soil Biol Biochem 32:1885

    CAS  Google Scholar 

  19. Vanha-Perttula T (1971) Biochim Biophys Acta Enzymol 227:390

    CAS  Google Scholar 

  20. Vignesh G, Manojkumar Y, Sugumar K, Arunachalam S (2015) J Lumin 157:297

    CAS  Google Scholar 

  21. Momeni L, Shareghi B, Saboury AA, Farhadian F (2016) J Phys Chem 120:9632

    CAS  Google Scholar 

  22. Waratrujiwong T, Krebs B, Spener F, Visoottiviseth P (2006) FEBS J 273:1649

    CAS  PubMed  Google Scholar 

  23. Sudha N, Chandrasekaran S, Sameena Y, Israel V (2015) Carbohydr Polym 115:589

    Google Scholar 

  24. Chandrasekaran S, Sudha N, Premnath D, Enoch IV (2015) J Biomol Struct Dyn 33:1945

    CAS  PubMed  Google Scholar 

  25. Sudha N, Enoch IV (2015) J Solution Chem 44:1367

    CAS  Google Scholar 

  26. Sudha N, Yousuf S, Israel EV, Paulraj MS, Dhanaraj P (2016) Colloids Surf B Biointerfaces 141:423

    CAS  PubMed  Google Scholar 

  27. Li H, Pu J, Wang Y, Liu C, Yu J, Li T, Wang R (2013) Spectrochim Acta A 115:1

    Google Scholar 

  28. Momeni L, Shareghi B, Saboury AA (2017) J Biomol Struct Dyn 35:1381

    CAS  PubMed  Google Scholar 

  29. Farhadian S, Shareghi B, Saboury AA (2017) J Biomol Struct Dyn 35:435

    CAS  PubMed  Google Scholar 

  30. Ross PD, Subramanian S (1981) Biochemistry 20:3096

    CAS  PubMed  Google Scholar 

  31. Sugiura Y, Kawabe H, Tanaka H, Fujimoto S, Ohara A (1981) J Biol Chem 256:10664

    CAS  PubMed  Google Scholar 

  32. Ardizzone S, Spinolo G, Trasatti S (1995) Electrchochim Acta 40:2683

    CAS  Google Scholar 

  33. Liu Y, Liu R (2012) Food Chem Toxicol 50:3298

    CAS  PubMed  Google Scholar 

  34. Than R, Feldmann AA, Krebs B (1999) Coord Chem Rev 182:211

    Google Scholar 

  35. Aurora R, George R (1998) Protein Sci 7:21

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen Q-X, Zhang R-Q, Yang P-Z, Li Y, Chen S-L, Li S, Yang Y, Zhou H-M (1999) Int J Biol Macromol 26:103

    PubMed  Google Scholar 

  37. Olczak M, Morawiecka B, Watorek W (2003) Acta Biochim Pol 50:1245

    CAS  PubMed  Google Scholar 

  38. Iwasa M, Yokoi T, Agisaka K (1983) Tohoku J Exp Med 140:435

    CAS  PubMed  Google Scholar 

  39. Durmus A, Eicken C, Sift BH, Kratel A, Kappl A, Huttrrmann RJ, Krebs B (1999) Eur J Biochem 260:709

    CAS  PubMed  Google Scholar 

  40. Treuel L, Malissek M (2013) Cell Subcell Nanotechnol 991:225

    CAS  Google Scholar 

  41. Ganger JE, Lopez MD, Dordick JS, Siegel RW (2011) Biomaterials 32:7241

    Google Scholar 

  42. Akbazadeh A, Samiei M, Davaran S (2012) Nanoscale Res Lett 7:144

    Google Scholar 

  43. Mu J, Wang Y, Zhao M, Zhang L (2012) Chem Commun 48:2540

    CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the Shahrekord University, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Behzad Shareghi or Ali Akbar Saboury.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, S., Shareghi, B. & Saboury, A.A. Spectroscopic analysis of the interaction between Co3O4 nanoparticles and acid phosphatase. Monatsh Chem 151, 637–647 (2020). https://doi.org/10.1007/s00706-020-02583-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02583-9

Keywords

Navigation